169 resultados para Southern Hemisphere


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The late Eocene through earliest Miocene stable-isotope composition of southwest Pacific microfossils has been examined in a traverse of high-quality sedimentary sequences ranging from subantarctic (DSDP Site 277) through temperate regions (DSDP Sites 592 and 593). Changes in oxygen-isotope values, measured in benthic and planktonic foraminifers, document the Oligocene development and strengthening of latitudinal thermal zonation from water masses with broad temperature gradients during the Eocene to the steeper gradients and more distinct latitudinally distributed surface water-mass belts of the Neogene. The oxygen-isotope records can be divided into three intervals: late Eocene, early Oligocene, and middle to late Oligocene. Each interval represents a successive stage in the evolution of latitudinal thermal gradients between subantarctic and temperate regions in the Southern Hemisphere. During the late Eocene, oxygen-isotope values at subantarctic Site 277 were similar to those at temperate Sites 592 and 593. The isotope values suggest that, although the inferred paleotemperatures at Site 277 are slightly cooler on average than those at the temperate sites, there is no evidence for a major thermal boundary between the regions at this time. All three sites record the well-known oxygen-isotope enrichment of about 1 per mil in both planktonic and benthic foraminifers in close association with the Eocene/Oligocene boundary. In contrast to the earliest Oligocene enrichments in the planktonic and benthic oxygen-isotope composition at Site 277, more northern Sites 592 and 593 exhibit a depletion through the early-middle Oligocene. This documents the beginning of thermal segregation as subantarctic waters cooled relative to those at temperate latitudes. During the Oligocene, this surface-water differentiation continued, as measured by planktonic d18O values. The oxygen-isotope records of the benthic foraminifers also began to diverge in the earliest Oligocene. The most enriched oxygen-isotope values in all records cluster in the middle Oligocene, marked by oscillating episodes of enrichments >0.5 per mil occurring most prominently in the subantarctic record of Site 277. These values can be interpreted as recording either the coldest oceanic temperatures of the Paleogene and/or accumulations of Antarctic ice. After this interval, latitudinal thermal differentiation developed rapidly during the middle Oligocene, especially in the surface waters which actually warmed in temperate areas. If the enriched Oligocene oxygen-isotope values indicate that ice had accumulated, this ice must have disappeared by the early Miocene, when depleted oxygen-isotope values suggest very warm conditions. The data presented in this chapter document the progressive increase of latitudinal temperature gradients from the late Eocene through the late Oligocene. This pattern of increasing isotopic offset between latitudinally distributed southwest Pacific sites is linked to the establishment and strengthening of the Circum-Antarctic Current, previously considered to have developed during the middle to late Oligocene. The intensification of this current system progressively decoupled the warm subtropical gyres from cool polar circulation, in turn leading to increased Antarctic glaciation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To date, the only Southern Hemisphere eolian grain-size record constructed for the early Paleogene comes from Deep Sea Drilling Project Site 215. Ten early Paleogene sediment samples from Site 215 were collected and processed to show that the existing eolian grain-size record at this site can be reproduced. Five samples each from Ocean Drilling Program Sites 1263 and 1267 were similarly examined to test the possibility of generating new Southern Hemisphere eolian grain-size records for the early Paleogene. Our results indicate that an eolian grain-size signal can be constructed at Walvis Ridge, although the record will be complicated by hemipelagic terrigenous inputs. Further, we assert that a record generated at a site located on the deep flanks of Walvis Ridge is particularly susceptible to hemipelagic influence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We compiled a database of bacterial abundance of 39 766 data points. After gridding with 1° spacing, the database covers 1.3% of the ocean surface. There is data covering all ocean basins and depth except the Southern Hemisphere below 350 m or from April until June. The average bacterial biomass is 3.9 ± 3.6 µg l-1 with a 20-fold decrease between the surface and the deep sea. We estimate a total ocean inventory of about 1.3 - 1029 bacteria. Using an average of published open ocean measurements for the conversion from abundance to carbon biomass of 9.1 fg cell-1, we calculate a bacterial carbon inventory of about 1.2 Pg C. The main source of uncertainty in this inventory is the conversion factor from abundance to biomass.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

General global cooling over the Neogene has been modulated by changes in Earth's orbital parameters. Investigations of deep-sea sediment sequences show that various orbital cycles can dominate climate records for different latitudes or for different time intervals. However, a comprehensive understanding of astronomical imprints over the entire Neogene has been elusive because of the general absence of long, continuous records extending beyond the Pliocene. We present benthic foraminiferal d18O and d13C records over the past 23 Ma at Ocean Drilling Program Site 1148 in the northern South China Sea and construct an astronomically tuned timescale (TJ08) for these records based on natural gamma radiation and color reflectance data at this site. Our results show that a 41 ka cycle has dominated sediment records at this location over the Neogene, displaying a linear response to orbital forcing. A 100 ka cycle has also been significant. However, it is correlated nonlinearly with Earth's orbital variations at the 100 ka band. The sediment records also display a prominent 405 ka cycle. Although this cycle was coherent with orbital forcing during the Oligocene and the early Miocene, it was not coherent with Earth's orbital variations at the 405 ka band over the whole Neogene. Amplification of Northern Hemisphere and Southern Hemisphere glaciation since the middle Miocene may be responsible for this change in sedimentary response. Our benthic foraminifera d18O and d13C records further exhibit amplitude variations with longer periods of 600, 1000, 1200, and 2400 ka. Apparently, these cycles are nonlinear responses to insolation forcing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During Leg ANT-XXIII/9 on the 31st March 2007 the German research vessel Polarstern mapped a significant bathymetric feature with its swath sonar system at the north-west margin of the Kerguelen Plateau. Due to the fact, that the feature was discovered just a month after the third IPY 2007/2008 has started, it was named after Graf Wilczek who, together with Carl Weyprecht, had promoted the first IPY. The undersea feature name proposal was officialy accepted by the GEBCO Sub-Committee on Undersea Feature Names (SCUFN) at its 20th meeting in late July and was added to the GEBCO Gazetteer of UFN (http://www.iho.shom.fr/COMMITTEES/GEBCO/SCUFN/scufn_intro.htm). ______________ Graf Hans Wilczek (Notation of the name from the book of Wilczek's daughter Elisabeth Kinsky- Wilczek). The Austrian naval hero Tegetthoff in 1871 planned an expedition to the southern hemisphere. The geophysicist G. Neumayer (1826-1909) already was selected as its chief scientist. Also the naval officer Carl Weyprecht (1838-1881) and the mountaineer Julius Payer (1841-1915) were to participate. Because of the sudden death of Tegettoff the project came to a halt and eventually was cancelled. By support of the well known geographer August Petermann (1822-1878) Weyprecht and Payer made a voyage into the Barents Sea which made them believe having seen the "open polar sea". An additional undertaking to confirm and to extend the find was obvious. At this stage of the affair count Hans Wilczek (1837-1922) got involved. He not only fostered a new expedition with a considerable sum of money, but he participated in commanding a support vessel to Novaya Zemlya. Wilczek managed to get home but the expedition vessel under Weyprecht's command became imprisoned in the pack for two years and at least had to be abandoned. After an adventurous trip back to civilisation Weyprecht changed his mind in what he considered the best way of polar research. Together with Wilczek in 1875 he started the promotion of international station-based polar exploration - the IPY was born. Wilczek guaranteed the constitution of an Austrian station on Novaya Zemlya and was ready to winter over there personally. Because of several political and other obstructions the beginning of the IPY was delayed till 1882. Wilczek's friend Weyprecht had passed away already. The command of the Austrian station, eventually erected on Jan Mayen, was given to Emil v. Wohlgemuth (1843-1896). Wilczek financed the main part of the Austrian IPY participation. Wilczek is described as honest and popular. On the one hand acquainted with the most prominent persons of his days, he respected everybody and had many relationships with scientists and artists. There is a kind of autobiography under the title: Hans Wilczek erzählt seinen Enkeln Erinnerungen aus seinem Leben (Hans Wilczek tells his grandchildren reminiscences from his life); edited by his daughter Elisabeth Kinsky-Wilczek, Graz 1933, 502 p. The book is available in an English version: Happy Retrospect - the Reminiscences of Count Wilczek 1837-1922, Bell and Sons, London 1934, 295 p.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The modern Indian Ocean summer monsoon is driven by differential heating between the Asian continent and the Indian Ocean to the south. This differential heating produces a strong pressure gradient which drives southwest monsoon winds during June, July, and August. Satellite and meteorological observations, aerosol measurements, sediment trap studies, and mineralogical studies indicate an atmospheric mode of transport for modern lithogenic sediments in the northwest Arabian Sea. Analyses of lithogenic grain size and mass accumulation rate (MAR) records from the Owen Ridge indicate that eolian transport has been the primary mode of transport for the past 370 kyr. Visual inspection shows that the MAR record is positively correlated with global ice volume as indicated by the marine delta18O record. In contrast, the grain-size record varies at a much higher frequency, showing little correlation to either the MAR or the delta18O records. Spectral analyses confirm these relationships, indicating that the lithogenic grain-size and MAR records are coherent only over the precession band whereby the grain size leads the MAR by 124° (~8 kyr). We conclude that an eolian transport mechanism is the only mechanism that allows for this phase difference and at the same time is supported by comparison of the grain size and MAR with independent eolian records. We use lithogenic grain size as a paleoclimatic indicator of summer monsoon wind strength and lithogenic MAR as a paleoclimatic indicator of source-area aridity. These interpretations are supported by comparison of the lithogenic records to independent indicators of wind strength (Globigerina bulloides upwelling record) and aridity (a loess record from central China). Such comparisons indicate high coherence and zero phase relationships. Our work supports the findings of previous studies which have documented the link between monsoon strength and the Earth's axial precession cycles. Both the lithogenic MAR and the grain-size records have high coherency with precessional insolation. Maximum lithogenic MAR (source-area aridity) is in phase with delta18O (global ice volume) and leads maximum precessional insolation by 88° (~6 kyr). We attribute this lead to the influence of glacial conditions on the aridity, and therefore the deflation potential, of the source areas. Maximum lithogenic grain size (summer monsoon wind strength) lags maximum precession by 148° (~9 kyr). We attribute this lag both to the influence of global and/or local ice volume and to the availability of latent heat from the southern hemisphere Indian Ocean, the two of which combine to determine the strength of the Indian Ocean monsoon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different proxies for sea surface temperature (SST) often exhibit divergent trends for deglacial warming in tropical regions, hampering our understanding of the phase relationship between tropical SSTs and continental ice volume at glacial terminations. To reconcile divergent SST trends, we report reconstructions of two commonly used paleothermometers (the foraminifera G. ruber Mg/Ca and the alkenone unsaturation index) from a marine sediment core collected in the southwestern tropical Indian Ocean encompassing the last 37,000 years. Our results show that SSTs derived from the alkenone unsaturation index (UK'37) are consistently warmer than those derived from Mg/Ca by ~2-3°C except for the Heinrich Event 1. In addition, the initial timing for the deglacial warming of alkenone SST started at ~15.6 ka, which lags behind that of Mg/Ca temperatures by 2.5 kyr. We argue that the discrepancy between the two SST proxies reflects seasonal differences between summer and winter rather than post-depositional processes or sedimentary biases. The UK'37 SST record clearly mimics the deglacial SST trend recorded in the North Atlantic region for the earlier part of the termination, indicating the early deglacial warming trend attributed to local summer temperatures was likely mediated by changes in the Atlantic Meridional Overturning Circulation at the onset of the deglaciation, In contrast, the glacial to interglacial SST pattern recorded by G. ruber Mg/Ca probably reflects cold season SSTs. This indicates that the cold season SSTs was likely mediated by climate changes in the southern hemisphere, as it closely tracks the Antarctic timing of deglaciation. Therefore our study reveals that the tropical southwestern Indian Ocean seasonal SST was closely linked to climate changes occurring in both hemispheres. The austral summer and winter recorded by each proxy is further supported with seasonal SST trends modeled by AOGCMs for our core site. Our interpretation that the alkenone and Mg/Ca SSTs are seasonally biased may also explain similar proxy mismatches observed in other tropical regions at the onset of the last termination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The past climate evolution of southwestern Africa is poorly understood and interpretations of past hydrological changes are sometimes contradictory. Here we present a record of leaf-wax dD and View the MathML source taken from a marine sediment core at 23°S off the coast of Namibia to reconstruct the hydrology and C3 versus C4 vegetation of southwestern Africa over the last 140 000 years (140 ka). We find lower leaf-wax dD and higher View the MathML source (more C4 grasses), which we interpret to indicate wetter Southern Hemisphere (SH) summer conditions and increased seasonality, during SH insolation maxima relative to minima and during the last glacial period relative to the Holocene and the last interglacial period. Nonetheless, the dominance of C4 grasses throughout the record indicates that the wet season remained brief and that this region has remained semi-arid. Our data suggest that past precipitation increases were derived from the tropics rather than from the winter westerlies. Comparison with a record from the Congo Basin indicates that hydroclimate in southwestern Africa has evolved in antiphase with that of central Africa over the last 140 ka.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A preliminary composite depth section was generated for Site 704 by splicing Holes 704A and 704B together over the interval 0-350 mbsf (0-9 m.y.). High-resolution carbonate and opal data from the cores were correlated with the calcium and silicon signals from the GST logging run in Hole 704B to identify missing and disturbed intervals in the cores. Paleomagnetic and biostratigraphic age boundaries were then transferred to the composite depth records to obtain an age model, and sedimentation rates were calculated by linear interpolation between datums. Algorithms relating measured dry-bulk density to carbonate content and depth were generated to produce predicted values of density for every sample. Accumulation rates of bulk, carbonate, opal, and terrigenous sediment components were then computed to generate a record of sediment deposition on the Meteor Rise that has a resolution of better than 200,000 yr for the period from 8.6 to 1.0 m.y. From 8.6 to 2.5 m.y., bulk-accumulation rates on the Meteor Rise averaged less than 2 g/cm**2/1000 yr and were dominated by carbonate deposition. The first significant opal deposition (6.0 m.y.) punctuated a brief (less than 0.6 Ma) approach of the Polar Front Zone (PFZ) northward that heralded a period of increasing severity of periodic carbonate dissolution events (terrigenous maxima) that abruptly terminated at 4.8 m.y. (base of the Thvera Subchron), synchronous with the reflooding of the Mediterranean after the Messinian salinity crisis. From 4.8 to 2.5 m.y., carbonate again dominated deposition, and the PFZ was far south except during brief northward excursions bracketing 4.2-3.9, 3.3-2.9, and 2.8-2.7 m.y. At 2.5 m.y., all components of bulk-accumulation rates increased dramatically (up to 15 g/cm2/1000 yr), and by 2.4 m.y., a pattern of alternating, high-amplitude carbonate and opal cyclicity marked the initiation of rapid glacial to interglaci·l swings in the position of the PFZ, synchronous with the "onset" of major Northern Hemisphere glaciation. Both mass-accumulation rates and the amplitude of the cycles decreased by about 2 m.y., but opal accumulation rates remained high up through the base of the Jaramillo (0.98 m.y.). From 1.9 to 1 m.y., the record is characterized by moderate amplitude fluctuations in carbonate and opal. This record of opal accumulation rates is interpreted as a long-term "Polar Front Indicator" that monitors the advance and retreat of the opal-rich PFZ northward (southward) toward (away from) the Meteor Rise in the subantarctic sector of the South Atlantic Ocean. The timing of PFZ migrations in the subantarctic South Atlantic Ocean is remarkably similar to Pliocene-Pleistocene climate records deduced from benthic oxygen isotope records in the North Atlantic Ocean (Raymo et al., 1989, doi:10.1029/PA004i004p00413; Ruddiman et al., 1989, doi:10.1029/PA004i004p00353). These include northward migrations during "cold" intervals containing strong glacial isotope stages (2.4-2.3, 2.1-2.0, 1.95-1.55, 1.45-1.30 m.y. and at about 1.13 and 1.09 m.y.) and southward migrations during "warm" intervals containing weak glacial and/or strong interglacial stages (2.45-2.40, 2.30-2.10, 2.00-1.95, 1.52-1.45, 1.30-1.18, 1.11, and 1.06-0.93 m.y.). Although our preliminary composite record is not continuous (some stages are obviously missing), there is hope that future work will identify these missing intervals in the as yet incomplete Hole 704B and will extend this high-resolution Southern Hemisphere climate record back to 8.6 m.y.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By the nuclear bomb tests during the 1950s and early 1960s, the radiocarbon content of the atmospheric CO, on the Southern Hemisphere rose within a few years from 98 to 162% of the standard recent value and then dropped to 122% (at the end of 1984). This rapid fluctuation was used to determine the lifetime of five species of lichens collected in the beginning of 1985 in the maritime Antarctic. Under the assumption that Lichens assimilate each year carbon at the same rate and that carbon once fixed at least in main branches never will be exchanged later on. The age of mature thalli of Caioplaco regalis, Ramalino tetebrata and Ustiea antarctica was determined to 32 years, while U, aurantiaco-atra and Himantormia lugubris gave an age of ca. 38 years and ca. 60 years, respectively.