150 resultados para Silica on YIG ferrite


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The enhanced accumulation of organic matter in Eastern Mediterranean sapropels and their unusually low d15N values have been attributed to either enhanced nutrient availability which led to elevated primary production and carbon sequestration or to enhanced organic matter preservation under anoxic conditions. In order to evaluate these two hypothesis we have determined Ba/Al ratios, amino acid composition, N and organic C concentrations and d15N in sinking particles, surface sediments, eight spatially distributed core records of the youngest sapropel S1 (10-6 ka) and older sapropels (S5, S6) from two locations. These data suggest that (i) temporal and spatial variations in d15N of sedimentary N are driven by different degrees of diagenesis at different sites rather than by changes in N-sources or primary productivity and (ii) present day TOC export production would suffice to create a sapropel like S1 under conditions of deep-water anoxia. This implies that both enhanced TOC accumulation and d15N depletion in sapropels were due to the absence of oxygen in deep waters. Thus preservation plays a major role for the accumulation of organic-rich sediments casting doubt on the need of enhanced primary production for sapropel formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drilling was undertaken at five sites (739-743) on ODP Leg 119 on a transect across the continental shelf of Prydz Bay, East Antarctica, to elucidate the long-term glacial history of the area and to examine the importance of the area with respect to the development of the East Antarctic ice sheet as a whole. In addition to providing a record of glaciation spanning 36 m.y. or more, Leg 119 has provided information concerning the development of a continental margin under the prolonged influence of a major ice sheet. This has allowed the development of a sedimentary model that may be applicable not only to other parts of the Antarctic continental margin, but also to northern high-latitude continental shelves. The cored glacial sedimentary record in Prydz Bay consists of three major sequences, dominated by diamictite: 1. An upper flat-lying sequence that ranges in thickness from a few meters in inner and western Prydz Bay to nearly 250 m in the outer or eastern parts of the bay. The uppermost few meters consist of Holocene diatom ooze and diatomaceous mud with a minor ice-rafted component overlying diamicton and diamictite of late Miocene to Quaternary age. The diamictite is mainly massive, but stratified varieties and minor mudstone and diatomite also occur. 2. An upper prograding sequence cored at Sites 739 and 743, unconformly below the flat-lying sequence. This consists of a relatively steep (4° inclination) prograding wedge with a number of discrete sedimentary packages. At Sites 739 and 743 the sequence is dominated by massive and stratified diamictite, some of which shows evidence of slumping and minor debris flowage. 3. A lower, more gently inclined, prograding sequence lies unconformably below the flat-lying sequence at Site 742 and the upper prograding sequence at Site 739. This extends to the base of both sites, to 316 and 487 mbsf, respectively. It is dominated by massive, relatively clast-poor diamictite which is kaolinite-rich, light in color, and contains sporadic carbonate-cemented layers. The lower part of Site 742 includes well-stratified diamictites and very poorly sorted mudstones. The base of this site has indications of large-scale soft-sediment deformation and probably represents proximity to the base of the glacial sequence. Facies analysis of the Prydz Bay glacial sequence indicates a range of depositional environments. Massive diamictite is interpreted largely as waterlain till, deposited close to the grounding line of a floating glacier margin, although basal till and debris flow facies are also present. Weakly stratified diamictite is interpreted as having formed close to or under the floating ice margin and influenced by the input of marine diatomaceous sediment (proximal glaciomarine setting). Well-stratified diamictite has a stronger marine input, being more diatom-rich, and probably represents a proximal-distal glaciomarine sediment with the glaciogenic component being supplied by icebergs. Other facies include a variety of mudstones and diatom-rich sediments of marine origin, in which an ice-rafted component is still significant. None of the recovered sediments are devoid of a glacial influence. The overall depositional setting of the prograding sequence is one in which the grounded ice margin is situated close to the shelf edge. Progradation was achieved primarily by deposition of waterlain till. The flat-lying sequence illustrates a complex sequence of advances and retreats across the outer part of the shelf, with intermittent phases of ice loading and erosion. The glacial chronology is based largely on diatom stratigraphy, which has limited resolution. It appears that ice reached the paleoshelf break by earliest Oligocene, suggesting full-scale development of the East Antarctic ice sheet by that time. The ice sheet probably dominated the continental margin for much of Oligocene to middle Miocene time. Retreat, but not total withdrawal of the ice sheet, took place in late Miocene to mid-Pliocene time. The late Pliocene to Pleistocene was characterized by further advances across, and progradation of, the continental shelf. Holocene time has been characterized by reduced glacial conditions and a limited influence of glacial processes on sedimentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphology, ecology, range and species composition of diatom algae mass accumulations that are biotypically associated with the lower surface of Arctic sea ice are discussed. Materials were obtained by skindivers in the Central Arctic Basin at drift stations SP-23 in August 1977 and SP-22 in July 1980.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface distributions of dissolved silicic acid, chlorophyll and diatom abundance were measured in the plume of the Mississippi River and adjacent waters during spring (late April and early May 1993) and summer (July 1992). In spring, the time of maximum river flow, there was an intense diatom bloom with a mean diatom abundance of 1.5 x 10**7 cells/l, more than an order of magnitude higher than in summer. Mixing curves of silicic acid concentration ([Si(OH)4]) versus salinity indicate that biological uptake within the river plume removed >99% of the Si(OH)4 supplied by the river in spring and 80 to 95% in summer. In spring [Si(OH)4] was occasionally depleted to <0.2 µM-among the lowest values ever reported from the ocean-with extensive depletion to >=0.5 µM over the shelf. In summer [Si(OH)4] was less severely depleted; the lowest measured was 0.93 µM and all others were >=2.4 µM. 30Si kinetic experiments were performed during both spring and summer to measure the degree to which the rate of Si uptake by the natural diatom assemblages was limited in situ by substrate availability. In spring the dependence of the specific uptake rate (V) on extracellular [Si(OH)4] conformed much more closely to the Michaelis-Menten saturation function than has been observed in past studies. Strong dependence of V on [Si(OH)4] was observed throughout the most Si(OH)4-depleted (<0.5 µM) region, where V was limited to 12 to 45% of the diatom assemblages' maximum uptake rate (Vmax). Half-saturation concentrations for Si uptake (Ks) averaged 0.85 uM (range = 0.48 to 1.71; n = 7) in spring, with the lowest values equal to the lowest previously reported for natural diatom assemblages. There was only 1 station in summer where V was limited by [Si(OH)4], and at that station Ks was 5.3 µM-quite high in comparison with previous studies. At stations where V was limited by [Si(OH)4], in both spring and summer, Chaetoceros spp. were numerically dominant; where there was no Si limitation other diatoms, usually Skeletonema costatum, dominated. The data thus indicate strong Si limitation in spring, with diatom assemblages well adapted to low [Si(OH)4], but little or no Si limitation in summer. Historical data suggest that coastal Si(OH)4 depletion and Si limitation may be recent phenomena in the northern Gulf of Mexico, resulting from increasing [NO3-] and decreasing [Si(OH)4] in the Mississippi River during the past 30 to 50 yr.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little is known concerning the effect of CO2 on phytoplankton ecophysiological processes under nutrient and trace element-limited conditions, because most CO2 manipulation experiments have been conducted under elements-replete conditions. To investigate the effects of CO2 and iron availability on phytoplankton ecophysiology, we conducted an experiment in September 2009 using a phytoplankton community in the iron limited, high-nutrient, low-chlorophyll (HNLC) region of the Bering Sea basin . Carbonate chemistry was controlled by the bubbling of the several levels of CO2 concentration (180, 380, 600, and 1000 ppm) controlled air, and two iron conditions were established, one with and one without the addition of inorganic iron. We demonstrated that in the iron-limited control conditions, the specific growth rate and the maximum photochemical quantum efficiency (Fv/Fm) of photosystem (PS) II decreased with increasing CO2 levels, suggesting a further decrease in iron bioavailability under the high-CO2 conditions. In addition, biogenic silica to particulate nitrogen and biogenic silica to particulate organic carbon ratios increased from 2.65 to 3.75 and 0.39 to 0.50, respectively, with an increase in the CO2 level in the iron-limited controls. By contrast, the specific growth rate, Fv/Fm values and elemental compositions in the iron-added treatments did not change in response to the CO2 variations, indicating that the addition of iron canceled out the effect of the modulation of iron bioavailability due to the change in carbonate chemistry. Our results suggest that high-CO2 conditions can alter the biogeochemical cycling of nutrients through decreasing iron bioavailability in the iron-limited HNLC regions in the future.