91 resultados para Significant wave height


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Presented are physical and biological data for the region extending from the Barents Sea to the Kara Sea during 158 scientific cruises for the period 1913-1999. Maps with the temporal distribution of physical and biological variables of the Barents and Kara Seas are presented, with proposed quality control criteria for phytoplankton and zooplankton data. Changes in the plankton community structure between the 1930s, 1950s, and 1990s are discussed. Multiple tables of Arctic Seas phytoplankton and zooplankton species are presented, containing ecological and geographic characteristics for each species, and images of live cells for the dominant phytoplankton species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seagrass meadows are important marine carbon sinks, yet they are threatened and declining worldwide. Seagrass management and conservation requires adequate understanding of the physical and biological factors determining carbon content in seagrass sediments. Here, we identified key factors that influence carbon content in seagrass meadows across several environmental gradients in Moreton Bay, SE Queensland. Sampling was conducted in two regions: (1) Canopy Complexity, 98 sites on the Eastern Banks, where seagrass canopy structure and species composition varied while turbidity was consistently low; and (2) Turbidity Gradient, 11 locations across the entire bay, where turbidity varied among sampling locations. Sediment organic carbon content and seagrass structural complexity (shoot density, leaf area, and species specific characteristics) were measured from shallow sediment and seagrass biomass cores at each location, respectively. Environmental data were obtained from empirical measurements (water quality) and models (wave height). The key factors influencing carbon content in seagrass sediments were seagrass structural complexity, turbidity, water depth, and wave height. In the Canopy Complexity region, carbon content was higher for shallower sites and those with higher seagrass structural complexity. When turbidity varied along the Turbidity Gradient, carbon content was higher at sites with high turbidity. In both regions carbon content was consistently higher in sheltered areas with lower wave height. Seagrass canopy structure, water depth, turbidity, and hydrodynamic setting of seagrass meadows should therefore be considered in conservation and management strategies that aim to maximize sediment carbon content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compressional (Vp) and shear (Vs) wave velocities have been measured to 1.0 kbar for 14 cores of well-consolidated sedimentary rock from Atlantic and Pacific sites of the Deep Sea Drilling Project. The range of VP (2.05-5.38 km/sec at 0.5 kbar) shows significant overlap with the range of oceanic layer-2 seismic velocities determined by marine refraction surveys, suggesting that sedimentary rocks may, in some regions, constitute the upper portion of layer 2. Differing linear relationships between VP and Vs for basalts and sedimentary rocks, however, may provide a method of resolving layer-2 composition. This is illustra ted for a refraction survey site on the flank of the Mid-Atlantic Ridge where layer-2 velocities agree with basalt, and two sites on the Saya de Malha Bank in the Indian Ocean where layer-2 velocities appear to represent sedimentary rock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study provides a theoretical assessment of the potential bias due to differential lateral transport on multi-proxy studies based on a range of marine microfossils. Microfossils preserved in marine sediments are at the centre of numerous proxies for paleoenvironmental reconstructions. The precision of proxies is based on the assumption that they accurately represent the overlying watercolumn properties and faunas. Here we assess the possibility of a syn-depositional bias in sediment assemblages caused by horizontal drift in the water column, due to differential settling velocities of sedimenting particles based on their shape, size and density, and due to differences in current velocities. Specifically we calculate the post-mortem lateral transport undergone by planktic foraminifera and a range of other biological proxy carriers (diatoms, radiolaria and fecal pellets transporting coccolithophores) in several regions with high current velocities. We find that lateral transport of different planktic foraminiferal species is minimal due to high settling velocities. No significant shape- or size-dependent sorting occurs before reaching the sediment, making planktic foraminiferal ideal proxy carriers. In contrast, diatoms, radiolaria and fecal pellets can be transported up to 500 km in some areas. For example in the Agulhas current, transport can lead to differences of up to 2°C in temperature reconstructions between different proxies in response to settling velocities. Therefore, sediment samples are likely to contain different proportions of local and imported particles, decreasing the precision of proxies based on these groups and the accuracy of the temperature reconstruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arctic permafrost may be adversely affected by climate change in a number of ways, so that establishing a world-wide monitoring program seems imperative. This thesis evaluates possibilities for permafrost monitoring at the example of a permafrost site on Svalbard, Norway. An energy balance model for permafrost temperatures is developed that evaluates the different components of the surface energy budget in analogy to climate models. The surface energy budget, consisting of radiation components, sensible and latent heat fluxes as well as the ground heat flux, is measured over the course of one year, which has not been accomplished for arctic land areas so far. A considerable small-scale heterogeneity of the summer surface temperature is observed in long-term measurements with a thermal imaging system, which can be reproduced in the energy balance model. The model can also simulate the impact of different snow depths on the soil temperature, that has been documented in field measurements. Furthermore, time series of terrestrial surface temperature measurements are compared to satellite-borne measurements, for which a significant cold-bias is observed during winter. Finally, different possibilities for a world-wide monitoring scheme are assessed. Energy budget models can incorporate different satellite data sets as training data sets for parameter estimation, so that they may constitute an alternative to purely satellite-based schemes.