112 resultados para Shrimp pondeffluents
Resumo:
To address growing concern over the effects of fisheries non-target catch on elasmobranchs worldwide, the accurate reporting of elasmobranch catch is essential. This requires data on a combination of measures, including reported landings, retained and discarded non-target catch, and post-discard survival. Identification of the factors influencing discard vs. retention is needed to improve catch estimates and to determine wasteful fishing practices. To do this we compared retention rates of elasmobranch non-target catch in a broad subset of fisheries throughout the world by taxon, fishing country, and gear. A regression tree and random forest analysis indicated that taxon was the most important determinant of retention in this dataset, but all three factors together explained 59% of the variance. Estimates of total elasmobranch removals were calculated by dividing the FAO global elasmobranch landings by average retention rates and suggest that total elasmobranch removals may exceed FAO reported landings by as much as 400%. This analysis is the first effort to directly characterize global drivers of discards for elasmobranch non-target catch. Our results highlight the importance of accurate quantification of retention and discard rates to improve assessments of the potential impacts of fisheries on these species.
Resumo:
Slices of polycyclic metasediments (marbles and meta-cherts) are tectonically amalgamated with the polydeformed basement of the Dent Blanche tectonic system along a major Alpine shear zone in the Western Alps (Becca di Salé area, Valtournenche Valley). A combination of techniques (structural analysis at various scales, metamorphic petrology, geochronology and trace element geochemistry) was applied to determine the age and composition of accessory phases (titanite, allanite and zircon) and their relation to major minerals. The results are used to reconstruct the polyphase structural and metamorphic history, comprising both pre-Alpine and Alpine cycles. The pre-Alpine evolution is associated with low-pressure high-temperature metamorphism related to Permo-Triassic lithospheric thinning. In meta-cherts, microtextural relations indicate coeval growth of allanite and garnet during this stage, at ~ 300 Ma. Textures of zircon also indicate crystallization at HT conditions; ages scatter from 263-294 Ma, with a major cluster of data at ~ 276 Ma. In impure marble, U-Pb analyses of titanite domains (with variable Al and F contents) yield apparent 206Pb/238U dates range from Permian to Jurassic. Chemical and isotopic data suggest that titanite formed at Permian times and was then affected by (extension-related?) fluid circulation during the Triassic and Jurassic, which redistributed major elements (Al and F) and partially opened the U-Pb system. The Alpine cycle lead to early blueschist facies assemblages, which were partly overprinted under greenschist facies conditions. The strong Alpine compressional overprint disrupted the pre-Alpine structural imprint and/or reactivated earlier structures. The pre-Alpine metamorphic record, preserved in these slices of metasediments, reflects the onset of the Permo-Triassic lithospheric extension to Jurassic rifting.
Resumo:
How organisms may adapt to rising global temperatures is uncertain, but concepts can emerge from studying adaptive physiological trait variations across existing spatial climate gradients. Many ectotherms, particularly fish, have evolved increasing genetic growth capacities with latitude (i.e. countergradient variation (CnGV) in growth), which are thought to be an adaptation primarily to strong gradients in seasonality. In contrast, evolutionary responses to gradients in mean temperature are often assumed to involve an alternative mode, 'thermal adaptation'. We measured thermal growth reaction norms in Pacific silverside populations (Atherinops affinis) occurring across a weak latitudinal temperature gradient with invariant seasonality along the North American Pacific coast. Instead of thermal adaptation, we found novel evidence for CnGV in growth, suggesting that CnGV is a ubiquitous mode of reaction-norm evolution in ectotherms even in response to weak spatial and, by inference, temporal climate gradients. A novel, large-scale comparison between ecologically equivalent Pacific versus Atlantic silversides (Menidia menidia) revealed how closely growth CnGV patterns reflect their respective climate gradients. While steep growth reaction norms and increasing growth plasticity with latitude in M. menidia mimicked the strong, highly seasonal Atlantic coastal gradient, shallow reaction norms and much smaller, latitude-independent growth plasticity in A. affinis resembled the weak Pacific latitudinal temperature gradient.
Resumo:
We present new U-Pb zircon (SHRIMP) data on rocks from Mt Newton and Cumpston Massif in the southern Prince Charles Mountains. Our data demonstrate that Mt Newton was affected by a newly proposed Palaeoproterozoic "Newton" Orogeny at c. 2100-2200 Ma. Sedimentation, felsic volcanism (c. 2200 Ma), metamorphism and folding, followed by granite intrusion (c. 2100 Ma), suggest development of a trough or aulacogene in the area during the early Palaeoproterozoic. An orthogneiss from Cumpston Massif yielded an age of c. 3180 Ma for granitic protolith emplacement, which is in good agreement with many U-Pb zircon ages from similar rocks in the southern Mawson Escarpment. A syn- to late-tectonic muscovite-bearing pegmatite from Cumpston Massif yielded a c. 2500 Ma date of emplacement, which indicates early Palaeoproterozoic activity in this block, probably in response to a tectono-magmatic episode in the Lambert Terrane bordering the Ruker Terrane in the northeast. The correlation of tectono-magmatic events in both the Ruker and Lambert terranes of the southern Prince Charles Mountains provides evidence for their common evolution during the Proterozoic.
Resumo:
Brachyuran and anomuran decapod crabs do not occur in the extremely cold waters of the Antarctic continental shelf whereas caridean and other shrimp-like decapods, amphipods and isopods are highly abundant. Differing capacities for extracellular ion regulation, especially concerning magnesium, have been hypothesised to determine cold tolerance and by that the biogeography of Antarctic crustaceans. Magnesium is known to have a paralysing effect, which is even more distinct in the cold. As only few or no data exist on haemolymph ionic composition of Sub-Antarctic and Antarctic crustaceans, haemolymph samples of 12 species from these regions were analysed for the concentrations of major inorganic ions (Na+, K+, Ca2+, Mg2+, Cl-, SO4 2-) by ion chromatography. Cation relationships guaranteed neuromuscular excitability in all species. Sulphate and potassium correlated positively with magnesium concentration. The Antarctic caridean decapod as well as the amphipods maintained low (6-20% of ambient sea water magnesium concentration), Sub-Antarctic brachyuran and anomuran crabs as well as the Antarctic isopods high (54-96% of ambient sea water magnesium concentration) haemolymph magnesium levels. In conclusion, magnesium regulation may explain the biogeography of decapods, but not that of the peracarids.
Resumo:
Reconstruction of the geologic history of the Yenisey Ridge, which developed as an accretionary collision orogen on the western margin of the Siberian craton is essential to understanding the evolution of mobile belts surrounding older cratons, as well as to resolving the recently much debated problem of whether Siberia was part of the supercontinent Rodinia. Available paleotectonic models suggest that this supercontinent was assembled at the Middle-Late Riphean boundary (1100-900 Ma) as a result of the Grenville orogeny, the first long-lived mountain building event which occurred in geosynclinal areas during the Neogaea. However, the character of crustal evolution at that stage is still speculative due to the lack of reliable and conclusive isotope data. In many current geodynamic models, a common underlying assumption is that the Yenisey Ridge showed very little endogenic activity for 1 Gyr, from the time of Tarak granite emplacement (1900-1840 Ma) to the Middle Neoproterozoic (~750 Ma). On the basis of this assumption, several recent studies suggested the absence of Grenvillian collisional events within the Yenisey Ridge. The results of the SHRIMP II U-Pb analysis of rift-related plagiogranites of the Nemtikha Complex, Yenisey Ridge (1380-1360 Ma) suggest an increase in magmatic activity in the Mesoproterozoic. Interpretation of these results in terms of a supercontinent cycle may help find evidence for possible occurrence of the Grenville orogeny on the western margin of the Siberian craton. With this in mind, we attempted to reconstruct using recent geochronological constraints the evolution of metapelitic rocks from the Teya polymetamorphic complex (TPMC), which is a good example of superimposed zoning of low and medium-pressure facies series. High precision age determinations from rock complexes formed in different geodynamic settings under different thermodynamic conditions and geothermal gradients were used to distinguish several major metamorphic events and unravel their time relations with tectonic and magmatic activity in the region.
Resumo:
Ocean acidification (OA), caused by the dissolution of increasing concentrations of atmospheric carbon dioxide (CO2) in seawater, is projected to cause significant changes to marine ecology and biogeochemistry. Potential impacts on the microbially driven cycling of nitrogen are of particular concern. Specifically, under seawater pH levels approximating future OA scenarios, rates of ammonia oxidation (the rate-limiting first step of the nitrification pathway) have been shown to dramatically decrease in seawater, but not in underlying sediments. However, no prior study has considered the interactive effects of microbial ammonia oxidation and macrofaunal bioturbation activity, which can enhance nitrogen transformation rates. Using experimental mesocosms, we investigated the responses to OA of ammonia oxidizing microorganisms inhabiting surface sediments and sediments within burrow walls of the mud shrimp Upogebia deltaura. Seawater was acidified to one of four target pH values (pHT 7.90, 7.70, 7.35 and 6.80) in comparison with a control (pHT 8.10). At pHT 8.10, ammonia oxidation rates in burrow wall sediments were, on average, fivefold greater than in surface sediments. However, at all acidified pH values (pH < = 7.90), ammonia oxidation rates in burrow sediments were significantly inhibited (by 79-97%; p < 0.01), whereas rates in surface sediments were unaffected. Both bacterial and archaeal abundances increased significantly as pHT declined; by contrast, relative abundances of bacterial and archaeal ammonia oxidation (amoA) genes did not vary. This research suggests that OA could cause substantial reductions in total benthic ammonia oxidation rates in coastal bioturbated sediments, leading to corresponding changes in coupled nitrogen cycling between the benthic and pelagic realms.
Resumo:
Ocean acidification (OA) resulting from anthropogenic emissions of carbon dioxide (CO2) has already lowered and is predicted to further lower surface ocean pH. There is a particular need to study effects of OA on organisms living in cold-water environments due to the higher solubility of CO2 at lower temperatures. Mussel larvae (Mytilus edulis) and shrimp larvae (Pandalus borealis) were kept under an ocean acidification scenario predicted for the year 2100 (pH 7.6) and compared against identical batches of organisms held under the current oceanic pH of 8.1, which acted as a control. The temperature was held at a constant 10°C in the mussel experiment and at 5°C in the shrimp experiment. There was no marked effect on fertilization success, development time, or abnormality to the D-shell stage, or on feeding of mussel larvae in the low-pH (pH 7.6) treatment. Mytilus edulis larvae were still able to develop a shell in seawater undersaturated with respect to aragonite (a mineral form of CaCO3), but the size of low-pH larvae was significantly smaller than in the control. After 2 mo of exposure the mussels were 28% smaller in the pH 7.6 treatment than in the control. The experiment with Pandalus borealis larvae ran from 1 through 35 days post hatch. Survival of shrimp larvae was not reduced after 5 wk of exposure to pH 7.6, but a significant delay in zoeal progression (development time) was observed.
Resumo:
The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.