84 resultados para Scale Composition
Resumo:
Holes 603C and 604 of DSDP Leg 93 were drilled on the western Atlantic continental rise at water depths of 4633 m and 2364 m, respectively. In Hole 603C, a nearly continuous, undisturbed, and complete section of Pliocene and lower Pleistocene sediments was recovered by hydraulic piston coring; in Hole 604, a section of uppermost Miocene to Pleistocene sediments was incompletely recovered by rotary coring. In order to reconstruct the Pliocene and Pleistocene history of isotopic variations, 139 oxygen and carbon isotope values were determined for planktonic and monospecific benthic foraminifer samples from these holes. Large parts of the Pleistocene history could not, however, be documented because sample intervals were large and sediments at Site 604 were redeposited. Time correlation is based on magnetostratigraphic (Hole 603C) and micropaleontologic (Hole 603C, Site 604) interpretation. Stable isotope analyses were carried out on the planktonic foraminiferal species Globigerinoides ruber, G. obliquus, and Globorotalia inflata from Hole 603C (48 analyses) and from Site 604 (48 analyses); at Site 604, the benthic foraminifer Uvigerina peregrina (43 analyses) was also studied through the section. Age calibration for Hole 603C is based on the magnetostratigraphy of Canninga et al. (1987; doi:10.2973/dsdp.proc.93.130.1987), which uses the time scale of Lowrie and Alvarez (1981).
Resumo:
Stable isotopic compositions of carbon and nitrogen and organic carbon content of sediments ranging from the Pliocene to the Pleistocene-Holocene in age from the Oman Margin (ODP Sites 724 and 725) are reported. In general, the organic carbon content is greater than 2% at Site 724. Prior to the Pleistocene-Holocene at this site, sediments with higher content of organic matter were deposited owing to favorable preservation conditions and/or higher productivity. In the Pleistocene, lower amounts of organic matter have been preserved; this material generally has more enriched nitrogen isotopic compositions. This may indicate intensification of the Oxygen Minimum Zone and denitrification with the onset of the Pleistocene. A correlation of carbon isotope content of these sediments with oxygen isotope stages at Site 724 indicates an enrichment in 13C during glacial events. Based on the stable isotope evidence of both carbon and nitrogen, there does not appear to be major input of terrigenous-derived allochthonous material in this marine environment. The timing and extent of monsoon winds on the productivity of this region are not evident, but require further studies for collaborative interpretation of small-scale features in the isotopic and carbon content of this environment.
Resumo:
The stable isotopic composition of two planktonic foraminifer species (Globigerinoides sacculifer and Neogloboquadrina dutertrei) and two benthic foraminifer species (Cibicidoides wuellerstorfi and Uvigerina peregrina) was measured at sub-orbital resolution through the marine isotope stages (MISs) 10, 11, and 12 (345-460 ka) at Site 1056 on the Blake-Bahama Outer Ridge. Planktonic foraminifers were counted for the interval 405-450 ka at 2-4-kyr resolution. Site 1056 (32°29'N, 76°20'W) is located on the continental slope (water depth: 2167 m) beneath the Gulf Stream. The average rate of sediment accumulation through the interval is 11.4 cm/kyr, but sediment accumulation is much more rapid during glacial intervals (15-17 cm/kyr). The decline in percent carbonate during glacial intervals, and its rise during interglacials, indicates that the increased sediment supply is of terrigenous origin. Low carbonate values and low benthic delta13C, which are both associated with a weak Western Boundary Undercurrent and low North Atlantic Deep Water production, persist for 6 kyr after the benthic delta18O record indicates that ice volume has begun to decrease. Recovery of carbonate and benthic delta13C values is abrupt and rapid. Millennial-scale variation (~3-4 kyr) is apparent in the glacial intervals of the planktonic delta18O records and is more pronounced in a Delta delta18O record, which represents the temperature range in the photic zone. Semi-precessional (10-12-kyr) cycles are apparent in the planktonic deltadelta13C record. The millennial-scale cycles are largely caused by an increase in G. sacculifer delta18O and represent surface warming. They are interpreted as representing periodic increases in westward intensification of the gyre. The semi-precessional cycles are driven by changes in the N. dutertrei delta13C and represent fluctuations in the Gulf Stream itself and therefore likely have a tropical origin. Planktonic foraminifer census counts did not show an expected response to one of the largest glacial/interglacial transitions of the late Pleistocene. The most obvious change was an increase in faunal diversity during MIS 12.2, the interval of maximum delta18O values. This suggests that cool slope water and warm subtropical gyre water penetrated a more sluggish Gulf Stream with greater frequency at this time. The millennial-scale maxima in the Delta delta18O record are accompanied by decreases in diversity, which is consistent with the interpretation of surface warming during these events.
Resumo:
Thirty seven deep-sea sediment cores from the Arabian Sea were studied geochemically (49 major and trace elements) for four time slices during the Holocene and the last glacial, and in one high sedimentation rate core (century scale resolution) to detect tracers of past variations in the intensity of the atmospheric monsoon circulation and its hydrographic expression in the ocean surface. This geochemical multi-tracer approach, coupled with additional information on the grain size composition of the clastic fraction, the bulk carbonate and biogenic opal contents makes it possible to characterize the sedimentological regime in detail. Sediments characterized by a specific elemental composition (enrichment) originated from the following sources: river suspensions from the Tapti and Narbada, draining the Indian Deccan traps (Ti, Sr); Indus sediments and dust from Rajasthan and Pakistan (Rb, Cs); dust from Iran and the Persian Gulf (Al, Cr); dust from central Arabia (Mg); dust from East Africa and the Red Sea (Zr/Hf, Ti/Al). Corg, Cd, Zn, Ba, Pb, U, and the HREE are associated with the intensity of upwelling in the western Arabian Sea, but only those patterns that are consistently reproduced by all of these elements can be directly linked with the intensity of the southwest monsoon. Relying on information from a single element can be misleading, as each element is affected by various other processes than upwelling intensity and nutrient content of surface water alone. The application of the geochemical multi-tracer approach indicates that the intensity of the southwest monsoon was low during the LGM, declined to a minimum from 15,000-13,000 14C year BP, intensified slightly at the end of this interval, was almost stable during the Bölling, Alleröd and the Younger Dryas, but then intensified in two abrupt successions at the end of the Younger Dryas (9900 14C year BP) and especially in a second event during the early Holocene (8800 14C year BP). Dust discharge by northwesterly winds from Arabia exhibited a similar evolution, but followed an opposite course: high during the LGM with two primary sources-the central Arabian desert and the dry Persian Gulf region. Dust discharge from both regions reached a pronounced maximum at 15,000-13,000 14C year. At the end of this interval, however, the dust plumes from the Persian Gulf area ceased dramatically, whereas dust discharge from central Arabia decreased only slightly. Dust discharge from East Africa and the Red Sea increased synchronously with the two major events of southwest monsoon intensification as recorded in the nutrient content of surface waters. In addition to the tracers of past dust flux and surface water nutrient content, the geochemical multi-tracer approach provides information on the history of deep sea ventilation (Mo, S), which was much lower during the last glacial maximum than during the Holocene. The multi-tracer approach-i.e. a few sedimentological parameters plus a set of geochemical tracers widely available from various multi-element analysis techniques-is a highly applicable technique for studying the complex sedimentation patterns of an ocean basin, and, specifically in the case of the Arabian Sea, can even reveal the seasonal structure of climate change.
Resumo:
This study examines the forcing mechanisms driving long-term carbonate accumulation and preservation in lacustrine sediments in Lake Iznik (northwestern Turkey) since the last glacial. Currently, carbonates precipitate during summer from the alkaline water column, and the sediments preserve aragonite and calcite. Based on X-ray diffraction data, carbonate accumulation has changed significantly and striking reversals in the abundance of the two carbonate polymorphs have occurred on a decadal time scale, during the last 31 ka cal BP. Different lines of evidence, such as grain size, organic matter and redox sensitive elements, indicate that reversals in carbonate polymorph abundance arise due to physical changes in the lacustrine setting, for example, water column depth and lake mixing. The aragonite concentrations are remarkably sensitive to climate, and exhibit millennial-scale oscillations. Extending observations from modern lakes, the Iznik record shows that the aerobic decomposition of organic matter and sulphate reduction are also substantial factors in carbonate preservation over long time periods. Lower lake levels favour aragonite precipitation from supersaturated waters. Prolonged periods of stratification and consequently enhanced sulphate reduction favour aragonite preservation. In contrast, prolonged or repeated exposure of the sediment-water interface to oxygen results in in situ aerobic organic matter decomposition, eventually leading to carbonate dissolution. Notably, the Iznik sediment profile raises the hypothesis that different states of lacustrine mixing lead to selective preservation of different carbonate polymorphs. Thus, a change in the entire lake water chemistry is not strictly necessary to favour the preservation of one polymorph over another.
Resumo:
Oceanic dimethyl sulfide (DMS) is the enzymatic cleavage product of the algal metabolite dimethylsulfoniopropionate (DMSP) and is the most abundant form of sulfur released into the atmosphere. To investigate the effects of two emerging environmental threats (ocean acidification and warming) on marine DMS production, we performed a large-scale perturbation experiment in a coastal environment. At both ambient temperature and 2 °C warmer, an increase in partial pressure of carbon dioxide (pCO2) in seawater (160-830 ppmv pCO2) favored the growth of large diatoms, which outcompeted other phytoplankton species in a natural phytoplankton assemblage and reduced the growth rate of smaller, DMSP-rich phototrophic dinoflagellates. This decreased the grazing rate of heterotrophic dinoflagellates (ubiquitous micrograzers), resulting in reduced DMS production via grazing activity. Both the magnitude and sign of the effect of pCO2 on possible future oceanic DMS production were strongly linked to pCO2-induced alterations to the phytoplankton community and the cellular DMSP content of the dominant species and its association with micrograzers.
Resumo:
The DSDP/ODP Hole 504B, drilled in the 5.9 Ma southern flank of the Costa Rica Rift, represents the deepest section through modern ocean floor basaltic basement. The hole penetrates a 570 m thick volcanic zone, a 210 m thick transition zone of volcanic rocks and dykes, and 1056 m of dykes. A representative selection of these basalt types has been investigated with respect to Nd and Pb isotopes. The epsilonNd of the basalts varies from 7.62 to 11.16. This range in the Nd-isotope composition represents about 67% of the total range reported for Pacific MORB. The Pb-isotope composition also shows significant variation, with 206Pb/204Pb varying from 17.90 to 18.82. The isotopic data show that a small volume of enriched mantle existed in the source. The large ranges in isotopic composition in a single drill hole demonstrate the importance of small-scale mantle heterogeneities in the petrogenesis of MORB. Fractional melting and extraction of small magma batches by channelled flow, and small, short-lived crustal magma reservoirs, with limited potential for mixing of the mantle derived magmas, are favored by these isotopic data.
Resumo:
IODP Site U1309 was drilled at Atlantis Massif, an oceanic core complex, at 30°N on the Mid-Atlantic Ridge (MAR). We present the results of a bulk rock geochemical study (major and trace elements) carried out on 228 samples representative of the different lithologies sampled at this location. Over 96% of Hole U1309D is made up of gabbroic rocks. Diabases and basalts cross-cut the upper part of the section; they have depleted MORB compositions similar to basalts sampled at MAR 30°N. Relics of mantle were recovered at shallow depth. Mantle peridotites show petrographic and geochemical evidence of extensive melt-rock interactions. Gabbroic rocks comprise: olivine-rich troctolites (> 70% modal olivine) and troctolites having high Mg# (82-89), high Ni (up to 2300 ppm) and depleted trace element compositions (Yb 0.06-0.8 ppm); olivine gabbros and gabbros (including gabbronorites) with Mg# of 60-86 and low trace element contents (Yb 0.125-2.5 ppm); and oxide gabbros and leucocratic dykes with low Mg# (< 50), low Ni (~65 ppm) and high trace element contents (Yb up to 26 ppm). Troctolites and gabbros are amongst the most primitive and depleted oceanic gabbroic rocks. The main geochemical characteristics of Site U1309 gabbroic rocks are consistent with a formation as a cumulate sequence after a common parental MORB melt, although (lack of systematic) downhole variations indicate that the gabbroic series were built by multiple magma injections. In detail, textural and geochemical variations in olivine-rich troctolites and gabbronorites suggest chemical interaction (assimilation?) between the parental melt and the intruded lithosphere. Site U1309 gabbroic rocks do not represent the complementary magmatic product of 30°N volcanics, although they sample the same mantle source. The bulk trace element composition of Site U1309 gabbroic rocks is similar to primitive MORB melt compositions; this implies that there was no large scale removal of melts from this gabbro section. The occurrence of such a large magmatic sequence implies that a high magmatic activity is associated with the formation of Atlantis Massif. Our results suggest that almost all melts feeding this magmatic system stays trapped into the intruded lithosphere.
Resumo:
In order to investigate the climate variability in the northern Antarctic Peninsula region, this paper focuses on the relationship between stable isotope content of precipitation and firn, and main meteorological variables (air temperature, relative humidity, sea surface temperature, and sea ice extent). Between 2008 and 2010, we collected precipitation samples and retrieved firn cores from several key sites in this region. We conclude that the deuterium excess oscillation represents a robust indicator of the meteorological variability on a seasonal to sub-seasonal scale. Low absolute deuterium excess values and the synchronous variation of both deuterium excess and air temperature imply that the evaporation of moisture occurs in the adjacent Southern Ocean. The d18O-air temperature relationship is complicated and significant only at a (multi)seasonal scale. Backward trajectory calculations show that air-parcels arriving at the region during precipitation events predominantly originate at the South Pacific Ocean and Bellingshausen Sea. These investigations will be used as a calibration for ongoing and future research in the area, suggesting that appropriate locations for future ice core research are located above 600 m a.s.l. We selected the Plateau Laclavere, Antarctic Peninsula as the most promising site for a deeper drilling campaign.