88 resultados para Riché
Resumo:
A detailed description of the ores of Lake Storsjoen was given by Vogt J. H. L., 1915 who pointed out that the ores may be divided into two principal types; first, iron ore with 2% or less of manganese (ex: Ertemalm), and, second, ores with manganese contents of up to 30% (ex: Korinter). The iron-rich ore sometimes occurs as a conglomerate embedded in manganese-rich ores, clearly demonstrating that two distinctly different precipitates are involved. In the iron-rich ore, a concentric structure is common of which light brown layers of loose, almost dusty material alternate with hard and brittle black layers, the thickness of each being 0.5 mm or less. The analyses presented in this paper seem to demonstrate that the composition of the sedimentary ores of Lake Storsjden could result from fluctuations in the composition of ground waters feeding the lake.
Resumo:
The author is studying various manganese coated river pebbles which had been given to him for evaluating their chemical properties. Samples were provided for the confluence of the Vistula and the Dunajec river in Poland by Mr. W. Petraschek. Other samples had been acquired earlier from Pr. A. Fraunhofer in the river bed of the Enns river near the town of Ernsthofen in Austria.
Resumo:
Understanding past changes in sea surface temperatures (SSTs) is crucial; however, existing proxies for reconstructing past SSTs are hindered by unknown ancient seawater composition (foraminiferal Mg/Ca and d18O), or reflect subsurface temperatures (TEX86) or have a limited applicable temperature range (Uk'37). We examine clumped isotope (D47) thermometry to fossil coccolith-rich material as an SST proxy, as clumped isotopes are independent of original seawater composition and applicable to a wide temperature range and coccolithophores are widespread and dissolution resistant. The D47-derived temperatures from <63, <20, <10 and 2-5 µm size fractions of two equatorial Pacific late Miocene-early Pliocene sediment samples (c1; c2) range between ~18-29 {degree sign}C, with c1 temperatures consistently above c2. Removing the >63 µm fraction removes most non-mixed layer components; however, the D47-derived temperatures display an unexpected slight decreasing trend with decreasing size fraction. This unexpected trend could partly arise because larger coccoliths (5-12 µm) are removed during the size fraction separation process. The c1 and <63 µm c2 D47-derived temperatures are comparable to concurrent Uk'37 SSTs. The <20, <10 and 2-5 µm c2 D47-derived temperatures are consistently cooler than expected. The D47-Uk'37 temperature offset is probably caused by abiotic/diagenetic calcite present in the c2 2-5 µm fraction (~53% by area), which potentially precipitated at bottom water temperatures of ~6 {degree sign}C . Our results indicate that clumped isotopes on coccolith-rich sediment fractions have potential as an SST proxy, particularly in tropical regions, providing that careful investigation of the appropriate size fraction for the region and timescale is undertaken.
Resumo:
It is expected that the calcification of foraminifera will be negatively affected by the ongoing acidification of the oceans. Compared to the open oceans, these organisms are subjected to much more adverse carbonate system conditions in coastal and estuarine environments such as the southwestern Baltic Sea, where benthic foraminifera are abundant. This study documents the seasonal changes of carbonate chemistry and the ensuing response of the foraminiferal community with bi-monthly resolution in Flensburg Fjord. In comparison to the surface pCO2, which is close to equilibrium with the atmosphere, we observed large seasonal fluctuations of pCO2 in the bottom and sediment pore waters. The sediment pore water pCO2 was constantly high during the entire year ranging from 1244 to 3324 µatm. Nevertheless, in contrast to the bottom water, sediment pore water was slightly supersaturated with respect to calcite as a consequence of higher alkalinity (AT) for most of the year. Foraminiferal assemblages were dominated by two calcareous species, Ammonia aomoriensis and Elphidium incertum, and the agglutinated Ammotium cassis. The one-year cycle was characterised by seasonal community shifts. Our results revealed that there is no dynamic response of foraminiferal population density and diversity to elevated sediment pore water pCO2. Surprisingly, the fluctuations of sediment pore water undersaturation (Omega calc) co-vary with the population densities of living Ammonia aomoriensis. Further, we observed that most of the tests of living calcifying foraminifera were intact. Only Ammonia aomorienis showed dissolution and recalcification structures on the tests, especially at undersaturated conditions. Therefore, the benthic community is subjected to high pCO2 and tolerates elevated levels as long as sediment pore water remains supersaturated. Model calculations inferred that increasing atmospheric CO2 concentrations will finally lead to a perennial undersaturation in sediment pore waters. Whereas benthic foraminifera indeed may cope with a high sediment pore water pCO2, the steady undersaturation of sediment pore waters would likely cause a significant higher mortality of the dominating Ammonia aomoriensis. This shift may eventually lead to changes in the benthic foraminiferal communities in Flensburg Fjord, as well as in other regions experiencing naturally undersaturated Omega calc levels.
Resumo:
Chemical, x-ray and other data are given for todorokite, (Mn, Mg, Ca, Ba, Na, K)2.Mn5O12.3H2O, from Charco Redondo, Cuba, Farragudo, Portugal, and Hüttenberg, Austria. Additional localities at Romanèche, France, Saipan Island, Bahia, Brazil and Sterling Hill, New Jersey, are noted. Delatorreite of Simon and Straczek (1958) is identical with todorokite.
Resumo:
Glauconite is generally agreed to be a reliable indicator of low sedimentation rate, but little systematic work has been done to specify the role of glauconite in a sequence-stratigraphic framework. Ocean Drilling Program Leg 174A recovered a good record of late Tertiary sediments along the shelf edge of the New Jersey US Atlantic margin, and glauconite was present in many intervals of the cores, sometimes in vertical proximity to sequence boundaries. Leg 174A glauconite was analyzed with binocular microscope, XRD and SEM to determine the percent of potassium and degree of maturity in order to relate occurrence to depositional environment. Seismic data were used to locate sequence boundaries, and percent glauconite was visually estimated. Glauconite samples from Site 1073 were found to have formed within a lowstand systems tract (LST), and as part of a distal condensed section (CS) within a transgressive systems tract (TST). These results are comparable to those from nearby Site 903 of Leg 150, which indicate a similar depositional setting for glauconite. Glauconites at shelf Sites 1071 and 1072 likely formed in the TST as well. Onshore, glauconite occurs mainly in transgressive systems tracts. The Miocene appears to be the upper limit of glauconite formation onshore. As the magnitude of sea-level change decreased, present onshore locations became too nearshore to maintain sediment-free environments, and the zone of glauconite deposition moved seaward. The same process did not occur offshore until the Plio-Pleistocene. Low subsidence-rate margins such as the US Atlantic are subject more to the variations of sea-level than to changes in sediment supply, tectonics, or other factors influencing their depositional patterns. Although glauconite occurrence is widespread in the stratigraphic record, this study demonstrates that for low subsidence-rate margins, primary deposition of glauconite is largely restricted to the TST.