79 resultados para Radiometric calibration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrated interpretation of multi-beam bathymetric, sediment-penetrating acoustic (PARASOUND) and seismic data show a multiple slope failure on the northern European continental margin, north of Spitsbergen. The first slide event occurred during MIS 3 around 30 cal. ka BP and was characterised by highly dynamic and rapid evacuation of ca. 1250 km**3 of sediment from the lower to the upper part of the continental slope. During this event, headwalls up to 1600 m high were created and ca. 1150 km**3 material from hemi-pelagic sediments and from the lower pre-existing trough mouth fan has been entrained and transported into the semi-enclosed Sophia Basin. This megaslide event was followed by a secondary evacuation of material to the Nansen Basin by funnelling of the debris through the channel between Polarstern Seamount and the adjacent continental slope. The main slide debris is overlain by a set of fining-upward sequences as evidence for the associated suspension cloud and following minor failure events. Subsequent adjustment of the eastern headwalls led to failure of rather soft sediments and creation of smaller debris flows that followed the main slide surficial topography. Discharge of the Hinlopen ice stream during the Last Glacial Maximum and the following deglaciation draped the central headwalls and created a fan deposit of glacigenic debris flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we review a global set of alkenone- and foraminiferal Mg/Ca-derived sea surface temperatures (SST) records from the Holocene and compare them with a suite of published Eemian SST records based on the same approach. For the Holocene, the alkenone SST records belong to the actualized GHOST database (Kim, J.-H., Schneider R.R., 2004). The actualized GHOST database not only confirms the SST changes previously described but also documents the Holocene temperature evolution in new oceanic regions such as the Northwestern Atlantic, the eastern equatorial Pacific, and the Southern Ocean. A comparison of Holocene SST records stemming from the two commonly applied paleothermometry methods reveals contrasting - sometimes divergent - SST evolution, particularly at low latitudes where SST records are abundant enough to infer systematic discrepancies at a regional scale. Opposite SST trends at particular locations could be explained by out-of-phase trends in seasonal insolation during the Holocene. This hypothesis assumes that a strong contrast in the ecological responses of coccolithophores and planktonic foraminifera to winter and summer oceanographic conditions is the ultimate reason for seasonal differences in the origin of the temperature signal provided by these organisms. As a simple test for this hypothesis, Eemian SST records are considered because the Holocene and Eemian time periods experienced comparable changes in orbital configurations, but had a higher magnitude in insolation variance during the Eemian. For several regions, SST changes during both interglacials were of a similar sign, but with higher magnitudes during the Eemian as compared to the Holocene. This observation suggests that the ecological mechanism shaping SST trends during the Holocene was comparable during the penultimate interglacial period. Although this "ecology hypothesis" fails to explain all of the available results, we argue that any other mechanism would fail to satisfactorily explain the observed SST discrepancies among proxies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide a new multivariate calibration-function based on South Atlantic modern assemblages of planktonic foraminifera and atlas water column parameters from the Antarctic Circumpolar Current to the Subtropical Gyre and tropical warm waters (i.e., 60°S to 0°S). Therefore, we used a dataset with the abundance pattern of 35 taxonomic groups of planktonic foraminifera in 141 surface sediment samples. Five factors were taken into consideration for the analysis, which account for 93% of the total variance of the original data representing the regional main oceanographic fronts. The new calibration-function F141-35-5 enables the reconstruction of Late Quaternary summer and winter sea-surface temperatures with a statistical error of ~0.5°C. Our function was verified by its application to a sediment core extracted from the western South Atlantic. The downcore reconstruction shows negative anomalies in sea-surface temperatures during the early-mid Holocene and temperatures within the range of modern values during the late Holocene. This pattern is consistent with available reconstructions.