92 resultados para R12 - Size and Spatial Distributions of Regional Economic Activity
Resumo:
Sediments from the ODP Site 1085A were studied to investigate the impacts of global cooling in the Middle and Late Miocene on the climate in Southwestern Africa. The size composition of the sediment was analysed emphasising the silt fraction. A comparison with the modern grain size distribution and suitable transport processes made it possible to assign specific transport processes to the grain size composition. Three processes are considered for transport of terrigeneous silt: while there was no evidence found for (1) transport by ocean currents, the analyses showed signals of (2) wind transport indicating dry conditions associated with a cool climate and (3) fluvial transport that points to humid and warm conditions. Three climatic phases were defined. The first phase from 13.8 to 11.8 Myr reveals a stable humid climate in Southwest Africa independent of the Antarctic glaciations. During the second phase from 11.8 to 10.4 Myr the regional climate cooled considerably but was not drier. Additionally, the climate during this phase reacted to the Antarctic glaciations. This cooling-trend continued during phase 3 from 10.4 to 9.0 Myr with a significant increase in dust input, pointing to overall drier conditions. However, fluvial transport still remained as the main source.
Resumo:
Three ice type regimes at Ice Station Belgica (ISB), during the 2007 International Polar Year SIMBA (Sea Ice Mass Balance in Antarctica) expedition, were characterized and assessed for elevation, snow depth, ice freeboard and thickness. Analyses of the probability distribution functions showed great potential for satellite-based altimetry for estimating ice thickness. In question is the required altimeter sampling density for reasonably accurate estimation of snow surface elevation given inherent spatial averaging. This study assesses an effort to determine the number of laser altimeter 'hits' of the ISB floe, as a representative Antarctic floe of mixed first- and multi-year ice types, for the purpose of statistically recreating the in situ-determined ice-thickness and snow depth distribution based on the fractional coverage of each ice type. Estimates of the fractional coverage and spatial distribution of the ice types, referred to as ice 'towns', for the 5 km**2 floe were assessed by in situ mapping and photo-visual documentation. Simulated ICESat altimeter tracks, with spot size ~70 m and spacing ~170 m, sampled the floe's towns, generating a buoyancy-derived ice thickness distribution. 115 altimeter hits were required to statistically recreate the regional thickness mean and distribution for a three-town assemblage of mixed first- and multi-year ice, and 85 hits for a two-town assemblage of first-year ice only: equivalent to 19.5 and 14.5 km respectively of continuous altimeter track over a floe region of similar structure. Results have significant implications toward model development of sea-ice sampling performance of the ICESat laser altimeter record as well as maximizing sampling characteristics of satellite/airborne laser and radar altimetry missions for sea-ice thickness.
Resumo:
The planktonic haptophyte Phaeocystis has been suggested to play a fundamental role in the global biogeochemical cycling of carbon and sulphur, but little is known about its global biomass distribution. We have collected global microscopy data of the genus Phaeocystis and converted abundance data to carbon biomass using species-specific carbon conversion factors. Microscopic counts of single-celled and colonial Phaeocystis were obtained both through the mining of online databases and by accepting direct submissions (both published and unpublished) from Phaeocystis specialists. We recorded abundance data from a total of 1595 depth-resolved stations sampled between 1955-2009. The quality-controlled dataset includes 5057 counts of individual Phaeocystis cells resolved to species level and information regarding life-stages from 3526 samples. 83% of stations were located in the Northern Hemisphere while 17% were located in the Southern Hemisphere. Most data were located in the latitude range of 50-70° N. While the seasonal distribution of Northern Hemisphere data was well-balanced, Southern Hemisphere data was biased towards summer months. Mean species- and form-specific cell diameters were determined from previously published studies. Cell diameters were used to calculate the cellular biovolume of Phaeocystis cells, assuming spherical geometry. Cell biomass was calculated using a carbon conversion factor for Prymnesiophytes (Menden-Deuer and Lessard, 2000). For colonies, the number of cells per colony was derived from the colony volume. Cell numbers were then converted to carbon concentrations. An estimation of colonial mucus carbon was included a posteriori, assuming a mean colony size for each species. Carbon content per cell ranged from 9 pg (single-celled Phaeocystis antarctica) to 29 pg (colonial Phaeocystis globosa). Non-zero Phaeocystis cell biomasses (without mucus carbon) range from 2.9 - 10?5 µg l-1 to 5.4 - 103 µg l-1, with a mean of 45.7 µg l-1 and a median of 3.0 µg l-1. Highest biomasses occur in the Southern Ocean below 70° S (up to 783.9 µg l-1), and in the North Atlantic around 50° N (up to 5.4 - 103 µg l-1).
Resumo:
Planktic foraminifera are heterotrophic mesozooplankton of global marine abundance. The position of planktic foraminifers in the marine food web is different compared to other protozoans and ranges above the base of heterotrophic consumers. Being secondary producers with an omnivorous diet, which ranges from algae to small metazoans, planktic foraminifers are not limited to a single food source, and are assumed to occur at a balanced abundance displaying the overall marine biological productivity at a regional scale. We have calculated the assemblage carbon biomass from data on standing stocks between the sea surface and 2500 m water depth, based on 754 protein-biomass data of 21 planktic foraminifer species and morphotypes, produced with a newly developed method to analyze the protein biomass of single planktic foraminifer specimens. Samples include symbiont bearing and symbiont barren species, characteristic of surface and deep-water habitats. Conversion factors between individual protein-biomass and assemblage-biomass are calculated for test sizes between 72 and 845 µm (minimum diameter). The calculated assemblage biomass data presented here include 1057 sites and water depth intervals. Although the regional coverage of database is limited to the North Atlantic, Arabian Sea, Red Sea, and Caribbean, our data include a wide range of oligotrophic to eutrophic waters covering six orders of magnitude of assemblage biomass. A first order estimate of the global planktic foraminifer biomass from average standing stocks (>125 µm) ranges at 8.5-32.7 Tg C yr-1 (i.e. 0.008-0.033 Gt C yr-1), and might be more than three time as high including the entire fauna including neanic and juvenile individuals adding up to 25-100 Tg C yr-1. However, this is a first estimate of regional planktic-foraminifer assemblage-biomass (PFAB) extrapolated to the global scale, and future estimates based on larger data-sets might considerably deviate from the one presented here. This paper is supported by, and a contribution to the Marine Ecosystem Data project (MAREDAT).
Resumo:
In this paper, we summarize data on terrigenous sediment supply in the Kara Sea and its accumulation and spatial and temporal variability during Holocene times. Sedimentological, organic-geochemical, and micropaleontological proxies determined in surface sediments allow to characterize the modern (riverine) terrigenous sediment input. AMS-14C dated sediment cores from the Ob and Yenisei estuaries and the adjacent inner Kara Sea were investigated to determine the terrigenous sediment fluxes and their relationship to paleoenvironmental changes. The variability of sediment fluxes during Holocene times is related to the post-glacial sea-level rise and changes in river discharge and coastal erosion input. Whereas during the late/middle Holocene most of the terrigenous sediments were deposited in the estuaries and the areas directly off the estuaries, huge amounts of sediments accumulated on the Kara Sea shelf farther north during the early Holocene before about 9 cal kyr BP. The maximum accumulation at that time is related to the lowered sea level, increased coastal erosion, and increased river discharge. Based on sediment thickness charts, echograph profiles and sediment core data, we estimate an average Holocene (0-11 cal kyr BP) annual accumulation of 194,106 t/yr of total sediment for the whole Kara Sea. Based on late Holocene (modern) sediment accumulation in the estuaries, probably 12,106 t/yr of riverine suspended matter (i.e. about 30% of the input) may escape the marginal filter on a geological time scale and is transported onto the open Kara Sea shelf. The high-resolution magnetic susceptibility record of a Yenisei core suggests a short-term variability in Siberian climate and river discharge on a frequency of 300-700 yr. This variability may reflect natural cyclic climate variations to be seen in context with the interannual and interdecadal environmental changes recorded in the High Northern Latitudes over the last decades, such as the NAO/AO pattern. A major decrease in MS values starting near 2.5 cal kyr BP, being more pronounced during the last about 2 cal kyr BP, correlates with a cooling trend over Greenland as indicated in the GISP-2 Ice Core, extended sea-ice cover in the North Atlantic, and advances of glaciers in western Norway. Our still preliminary interpretation of the MS variability has to be proven by further MS records from additional cores as well as other high-resolution multi-proxy Arctic climate records.
Resumo:
With the aim of analyzing the complex physical and biogeochemical interactions at high temporal and spatial resolution in the complex estuarine waters of Alfacs Bay, a beam attenuation-based approach was used as optical proxy of different biogeochemical variables. Thus, the dataset contains the attenuation proxies as well as laboratory results from the analysis of water samples, which were used to validate our approach. In addition, the major physical forcing in the Bay was also measured.
Resumo:
The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present data set presents depth integrated values of diazotrophs Gamma-A nifH genes abundance, computed from a collection of source data sets.
Resumo:
Aerial observations of light pollution can fill an important gap between ground based surveys and nighttime satellite data. Terrestrially bound surveys are labor intensive and are generally limited to a small spatial extent, and while existing satellite data cover the whole world, they are limited to coarse resolution. This paper describes the production of a high resolution (1 m) mosaic image of the city of Berlin, Germany at night. The dataset is spatially analyzed to identify themajor sources of light pollution in the city based on urban land use data. An area-independent 'brightness factor' is introduced that allows direct comparison of the light emission from differently sized land use classes, and the percentage area with values above average brightness is calculated for each class. Using this methodology, lighting associated with streets has been found to be the dominant source of zenith directed light pollution (31.6%), although other land use classes have much higher average brightness. These results are compared with other urban light pollution quantification studies. The minimum resolution required for an analysis of this type is found to be near 10 m. Future applications of high resolution datasets such as this one could include: studies of the efficacy of light pollution mitigation measures, improved light pollution simulations, economic and energy use, the relationship between artificial light and ecological parameters (e.g. circadian rhythm, fitness, mate selection, species distributions, migration barriers and seasonal behavior), or the management of nightscapes. To encourage further scientific inquiry, the mosaic data is freely available at Pangaea.
Resumo:
The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present data set presents depth integrated values of diazotrophs nitrogen fixation rates, computed from a collection of source data sets.