155 resultados para Proxy-data
Resumo:
We present new Holocene century to millennial-scale proxies for the well-dated piston core MD99-2269 from Húnaflóadjúp on the North Iceland Shelf. The core is located in 365 mwd and lies close to the fluctuating boundary between Atlantic and Arctic/Polar waters. The proxies are: alkenone-based SST°C, and Mg/Ca SST°C estimates and stable d13C and d18O values on planktonic and benthic foraminifera. The data were converted to 60 yr equi-spaced time-series. Significant trends in the data were extracted using Singular Spectrum Analysis and these accounted for between 50% and 70% of the variance. A comparison between these data with previously published climate proxies from MD99-2269 was carried out on a data set which consisted of 14-variable data set covering the interval 400-9200 cal yr BP at 100 yr time steps. This analysis indicated that the 1st two PC axes accounted for 57% of the variability with high loadings clustering primarily into "nutrient" and "temperature" proxies. Clustering on the 100 yr time-series indicated major changes in environment at ~6350 and ~3450 cal yr BP, which define early, mid- and late Holocene climatic intervals. We argue that a pervasive freshwater cap during the early Holocene resulted in warm SST°s, a stratified water column, and a depleted nutrient supply. The loss of the freshwater layer in the mid-Holocene resulted in high carbonate production, and the late Holocene/neoglacial interval was marked by significantly more variable sea surface conditions.
Resumo:
Radiocarbon stratigraphy is an essential tool for high resolution paleoceanographic studies. Age models based on radiocarbon ages of foraminifera are commonly applied to a wide range of geochemical studies, including the investigation of temporal leads and lags. The critical assumption is that temporal coupling between foraminifera and other sediment constituents, including specific molecular organic compounds (biomarkers) of marine phytoplankton, e.g. alkenones, is maintained in the sediments. To test this critical assumption in the Benguela upwelling area, we have determined radiocarbon ages of total C37-C39 alkenones in 20 samples from two gravity cores and three multicorer cores. The cores were retrieved from the continental shelf and slope off Namibia, and samples were taken from Holocene, deglacial and Last Glacial Maximum core sections. The alkenone radiocarbon ages were compared to those of planktic foraminifera, total organic carbon, fatty acids and fine grained carbonates from the same samples. Interestingly, the ages of alkenones were 1000 to 4500 yr older than those of foraminifera in all samples. Such age differences may be the result of different processes: Bioturbation associated with grain size effects, lateral advection of (recycled) material and redeposition of sediment on upper continental slopes due to currents or tidal movement are examples for such processes. Based on the results of this study, the age offsets between foraminifera and alkenones in sediments from the upper continental slope off Namibia most probably do not result from particle-selective bioturbation processes. Resuspension of organic particles in response to tidal movement of bottom waters with velocities up to 25 cm/s recorded near the core sites is the more likely explanation. Our results imply that age control established using radiocarbon measurements of foraminifera may be inadequate for the interpretation of alkenone-based proxy data. Observed temporal leads and lags between foraminifera based data and data derived from alkenone measurements may therefore be secondary signals, i.e. the result of processes associated with particle settling and biological activity.
Resumo:
Paleoenvironmental proxy data for ocean properties, eolian sediment input, and continental rainfall based on high-resolution analyses of sediment cores from the southwestern Black Sea and the northernmost Gulf of Aqaba were used to infer hydroclimatic changes in northern Anatolia and the northern Red Sea region during the last ~7500 years. Pronounced and coherent multicentennial variations in these records reveal patterns that strongly resemble modern temperature and rainfall anomalies related to the Arctic Oscillation/North Atlantic Oscillation (AO/NAO). These patterns suggest a prominent role of AO/NAO-like atmospheric variability during the Holocene beyond interannual to interdecadal timescales, most likely originating from solar output changes.
Resumo:
Late Neogene stratigraphy of southern Victoria Land Basin is revealed in coastal and offshore drill cores and a network of seismic data in McMurdo Sound, Antarctica. These data preserve a record of ice sheet response to global climate variability and progressive cooling through the past 5 million years. Application of a composite standard age model for diatom event stratigraphy to the McMurdo Sound drill cores provides an internally precise mechanism to correlate stratigraphic data and derive an event history for the basin. These marine records are indirectly compared to data obtained from geological outcrop in the Transantarctic Mountains to produce an integrated history of Antarctic Ice Sheet response to climate variability from the early Pliocene to Recent. Four distinct chronostratigraphic intervals reflect stages and steps in a transition from a relatively warm early Pliocene Antarctic coastal climate to modern cold polar conditions. Several of these stages and steps correlate with global events identified via geochemical proxy data recovered from deep ocean cores in mid to low latitudes. These correlations allow us to consider linkages between the high southern latitudes and tropical regions and establish a temporal framework to examine leads and lags in the climate system through the late Neogene and Quaternary. The relative influence of climate-tectonic feedbacks is discussed in light of glacial erosion and isostatic rebound that also influence the history along the Southern Victoria Land coastal margin.
Resumo:
Subtropical Gyres are an important constituent of the ocean-atmosphere system due to their capacity to store vast amounts of warm and saline waters. Here we decipher the sensitivity of the (sub)surface North Atlantic Subtropical Gyre with respect to orbital and millennial scale climate variability between ~140 and 70 ka, Marine Isotope Stage (MIS) 5. Using (isotope)geochemical proxy data from surface and thermocline dwelling foraminifers from Blake Ridge off the west coast of North America (ODP Site 1058) we show that the oceanographic development at subsurface (thermocline) level is substantially different from the surface ocean. Most notably, surface temperatures and salinities peak during the penultimate deglaciation (Termination II) and early MIS 5e, implying that subtropical surface ocean heat and salt accumulation might have resulted from a sluggish northward heat transport. In contrast, maximum thermocline temperatures are reached during late MIS 5e when surface temperatures are already declining. We argue that the subsurface warming originated from intensified Ekman downwelling in the Subtropical Gyre due to enhanced wind stress. During MIS 5a-d a tight interplay of the subtropical upper ocean hydrography to high latitude millennial-scale cold events can be observed. At Blake Ridge, the most pronounced of these high latitude cold events are related to surface warming and salt accumulation in the (sub)surface. Similar to Termination II, heat accumulated in the Subtropical Gyre probably due to a reduced Atlantic Meridional Overturning Circulation. Additionally, a southward shift and intensification of the subtropical wind belts lead to a decrease of on-site precipitation and enhanced evaporation, coupled to intensified gyre circulation. Subsequently, the northward advection of these warm and saline water likely contributed to the fast resumption of the overturning circulation at the end of these high latitude cold events.
Resumo:
Transfer of organic carbon (OC) from the terrestrial to the oceanic carbon pool is largely driven by riverine and aeolian transport. Before transport, however, terrigenous organic matter can be retained in intermediate terrestrial reservoirs such as soils. Using compound-specific radiocarbon analysis of terrigenous biomarkers their average terrestrial residence time can be evaluated. Here we show compound-specific radiocarbon (14C) ages of terrigenous biomarkers and bulk 14C ages accompanied by geochemical proxy data from core top samples collected along transects in front of several river mouths in the Black Sea. 14C ages of long chain n-alkanes, long chain n-fatty acids and total organic carbon (TOC) are highest in front of the river mouths, correlating well with BIT (branched and isoprenoid tetraether) indices, which indicates contribution of pre-aged, soil-derived terrigenous organic matter. The radiocarbon ages decrease further offshore towards locations where organic matter is dominated by marine production and aeolian input potentially contributes terrigenous organic matter. Average terrestrial residence times of vascular plant biomarkers deduced from n-C29+31 alkanes and n-C28+30 fatty acids ages from stations directly in front of the river mouths range from 900 ± 70 years to 4400 ± 170 years. These average residence times correlate with size and topography in climatically similar catchments, whereas the climatic regime appears to control continental carbon turnover times in morphologically similar drainage areas of the Black Sea catchment. Along-transect data imply petrogenic contribution of n-C29+31 alkanes and input via different terrigenous biomarker transport modes, i.e., riverine and aeolian, resulting in aged biomarkers at offshore core locations. Because n-C29+31 alkanes show contributions from petrogenic sources, n-C28+30 fatty acids likely provide better estimates of average terrestrial residence times of vascular plant biomarkers. Moreover, sedimentary n-C28 and n-C30 fatty acids appear clearly much less influenced by autochthonous sources than n-C24 and n-C26 fatty acids as indicated by increasing radiocarbon ages with increasing chain-length and are, thus, more representative as vascular plant biomarkers.
Resumo:
Lake Meerfelder Maar (Germany) provides a varved record from the Last Glacial/Interglacial transition back to ca 1500 years BP. This study shows results for the Holocene sequence from new cores collected in 2009 based on varve counting, microfacies and micro-XRF analyses. The main goal of combining those analyses is to provide a new approach for interpreting long-term palaeolimnological proxy data and testing the climate-proxy stationarity throughout the current interglacial period. Varve counting provides a new independent Holocene chronology (MFM2012) with an estimated counting error of 1-0.5% and supported by 14C dating. Varve structure and thickness and geochemical composition of the varves give information about the main environmental processes that affect the lake and its catchment as well as the possible climate variability behind. Varves are couplets of i) a spring/summer laminae composed of monospecific diatom blooms and ii) an autumn/winter sub-layer made of minerogenic material and re-worked sediments. Thickness of the varves and sub-layers reflect lake variability and allow seasons to be distinguished as well as seasonal proxies. Changes in the winter minerogenic influx into the lake are reflected by Ti intensities and the Si/Ti ratio as a indicator for diatom concentration, which can be used as a proxy for water circulation during the early spring. Long-term variability of geochemical composition shows a reduction of the detrital material input (Ti) at 5,000 varve yrs BP and a visible sensitivity to water mixing (Si/Ti) during the Late Holocene. Variations of Ti intensities during the early and mid-Holocene do not show a clear relationship with climate. In contrast, higher values of the Si/Ti ratio together with thicker varves have been interpreted as wind-stress phases, which coincide with centennial variability of European cold/wet episodes during the Late Holocene. Our findings show that a long-term change in the lake and/or variability of the climate system can influence proxy sensitivity of a lacustrine record.
Resumo:
Oxygen-isotope records from Greenland ice cores indicate numerous rapid climate fluctuations during the last glacial period. North Atlantic marine sediment cores show comparable variability in sea surface temperature and the deposition of icerafted debris. In contrast, very few continental records of this time period provide the temporal resolution and environmental sensitivity necessary to reveal the extent and effects of these environmental fluctuations on the continents. Here we present high-resolution geochemical, physical and pollen data from lake sediments in Italy and from a Mediterranean sediment core, linked by a common tephrochronology. Our lacustrine sequence extends to the past 102,000 years. Many of its features correlate well with the Greenland ice-core records, demonstrating that the closely coupled ocean-atmosphere system of the Northern Hemisphere during the last glacial extended its influence at least as far as the central Mediterranean region. Numerous vegetation changes were rapid, frequently occurring in less than 200 years, showing that the terrestrial biosphere participated fully in lastglacial climate variability. Earlier than 65,000 years ago, our record shows more climate fluctuations than are apparent in the Greenland ice cores. Together, the multi-proxy data from the continental and marine records reveal differences in the seasonal character of climate during successive interstadials, and provide a step towards determining the underlying mechanisms of the centennial-millennial-scale variability.
Resumo:
Stable isotope, trace metal, alkenone paleothermometry, and radiocarbon methods have been applied to sediment cores in the western subpolar North Atlantic between Hudson Strait and Cape Hatteras to reveal the history of climate in that region over the past ~11 kyr. We focus on cores from the Laurentian Fan, which is known to have rapid and continuous accumulation of hemipelagic sediment. Although results among our various proxy data are not always in agreement, the weight of the evidence (alkenone sea surface temperature (SST), d18O and abundance of Globigerinoides ruber) indicates a continual cooling of surface waters over Laurentian Fan, from about 18°C in the early Holocene to about 8°C today. Alternatively, Mg/Ca data on planktonic foraminifera indicate no systematic change in Holocene SST. The inferred long-term decrease in SST was probably driven by decreasing seasonality of Northern Hemisphere insolation. Two series of proxy data show the gradual cooling was interrupted by a two-step cold pulse that began 8500 years ago, and lasted about 700 years. Although this event is associated with the final deglaciation of Hudson Bay, there is no d18O minimum anywhere in the Labrador Sea, yet there is some evidence for it as far south as Cape Hatteras. Finally, although the 8200 year B.P. event has been implicated in decreasing North Atlantic ventilation, and hence widespread temperature depression on land and at sea, we find inconsistent evidence for a change at that time in deep ocean nutrient content at ~4 km water depth.
Resumo:
ix Ocean Drilling Program (ODP) sites, in the Northwest Atlantic have been used to investigate kinematic and chemical changes in the "Western Boundary Undercurrent" (WBUC) during the development of full glacial conditions across the Marine Isotope Stage 5a/4 boundary (~70,000 years ago). Sortable silt mean grain size(sort s) measurements are employed to examine changes in near bottom flow speeds, together with carbon isotopes measured in benthic foraminifera and % planktic foraminiferal fragmentation as proxies for changes in water-mass chemistry. A depth transect of cores, spanning 1.8-4.6 km depth, allows changes in both the strength and depth of the WBUC to be constrained across millennial scale events. Sort s measurements reveal that the flow speed structure of the WBUC during warm intervals ("interstadials") was comparable to modern (Holocene) conditions. However, significant differences are observed during cold intervals, with higher relative flow speeds inferred for the shallow component of the WBUC (~2 km depth) during all cold "stadial" intervals (including Heinrich Stadial 6), and a substantial weakening of the deep component (~3-4 km) during full glacial conditions. Our results therefore reveal that the onset of full glacial conditions was associated with a regime shift to a shallower mode of circulation (involving Glacial North Atlantic Intermediate Water) that was quantitatively distinct from preceding cold stadial events. Furthermore, our chemical proxy data show that the physical response of the WBUC during the last glacial inception was probably coupled to basin-wide changes in the water-mass composition of the deep Northwest Atlantic.
Resumo:
The sensitivity to temperature of Mg/Ca ratios in the shallow-infaunal benthic foraminifera Uvigerina spp. has been assessed. Core-top calibrations over ~1-20 °C show a range in sensitivity of 0.065-0.084 mmol/mol/°C but few data are available spanning the temperature range anticipated in deep-sea records over glacial-interglacial cycles. In contrast to epibenthic foraminiferal species, carbonate ion saturation appears not to affect Mg/Ca significantly. A method based on estimating the ratio of the temperature sensitivity of foraminiferal Mg/Ca to that of d18Ocalcite shows that sensitivity for Mg/Ca at the high end of the observed core-top range (~0.1 mmol/mol/°C) is required for consistency with LGM-Holocene differences in each property as constrained by independent proxy data. This is supported by a Mg/Ca record for Uvigerina spp. generated for the Southern Ocean over the past 440,000 years from Ocean Drilling Program Site 1123 (Chatham Rise, New Zealand). The record shows variability that correlates with climate oscillations. The LGM deep ocean temperature derived from the Mg/Ca record is -1.1 ± 0.3 °C. Transformation to temperature allows estimates to be made of changes in bottom water temperature and seawater d18O and comparison made with literature records. Analysis reveals a ~2.5-kyr lead in the record of temperature over calcite d18O and a longer lead over seawater d18O. This is a reflection of larger phase offsets at eccentricity periods; phase offsets at tilt and precession are within error zero.
Resumo:
Two high-resolution sediment cores from eastern Fram Strait have been investigated for sea subsurface and surface temperature variability during the Holocene (the past ca 12,000 years). The transfer function developed by Husum and Hald (2012) has been applied to sediment cores in order to reconstruct fluctuations of sea subsurface temperatures throughout the period. Additional biomarker and foraminiferal proxy data are used to elucidate variability between surface and subsurface water mass conditions, and to conclude on the Holocene climate and oceanographic variability on the West Spitsbergen continental margin. Results consistently reveal warm sea surface to subsurface temperatures of up to 6 °C until ca 5 cal ka BP, with maximum seawater temperatures around 10 cal ka BP, likely related to maximum July insolation occurring at that time. Maximum Atlantic Water (AW) advection occurred at surface and subsurface between 10.6 and 8.5 cal ka BP based on both foraminiferal and dinocyst temperature reconstructions. Probably, a less-stratified, ice-free, nutrient-rich surface ocean with strong AW advection prevailed in the eastern Fram Strait between 10 and 9 cal ka BP. Weakened AW contribution is found after ca 5 cal ka BP when subsurface temperatures strongly decrease with minimum values between ca 4 and 3 cal ka BP. Cold late Holocene conditions are furthermore supported by high planktic foraminifer shell fragmentation and high d18O values of the subpolar planktic foraminifer species Turborotalita quinqueloba. While IP25-associated indices as well as dinocyst data suggest a sustained cooling due to a decrease in early summer insolation and consequently sea-ice increase since about 7 cal ka BP in surface waters, planktic foraminiferal data including stable isotopes indicate a slight return of stronger subsurface AW influx since ca 3 cal ka BP. The observed decoupling of surface and subsurface waters during the later Holocene is most likely attributed to a strong pycnocline layer separating cold sea-ice fed surface waters from enhanced subsurface AW advection. This may be related to changes in North Atlantic subpolar versus subtropical gyre activity.
Resumo:
Stable isotope records for carbon and oxygen in bulk carbonates, carbon in bulk organic matter, and for total and chromium-reducible sulfur in a lacustrine sediment core from Lake Steisslingen (Southwest Germany) show several distinct and abrupt shifts during the last 15,000 years. Variations in the isotopic composition of authigenic carbonates indicate two major phases in the lake history. In the pre-Holocene, the hydrological budget of the lake was apparently stable. Variations of delta18O values of authigenic carbonates were, therefore, dominantly controlled by temperature changes. A decrease in the delta18Ocarb values of about 2 per mil at the Allerød/Younger Dryas transition is interpreted as a drop in mean annual air temperatures of approximately 5°C. An abrupt temperature increase of a similar magnitude is inferred at the Younger Dryas/Preboreal boundary. Throughout most of the Holocene, the isotopic composition of authigenic carbonates was influenced by marked changes in the hydrological budget of the lake. A major positive excursion in the delta13Ccarb and delta18Ocarb values at the beginning of the Atlantic and a smaller one in the Preboreal were related to evaporation effects, which indicate that dry climatic conditions must have prevailed at that time. A simultaneous increase in delta13C values of bulk organic matter at the beginning of the Atlantic suggests a high level of productivity in the lake. As a consequence, aqueous sulfate became limited as indicated by variations in the delta34S values of total and chromium-reducible sedimentary sulfur. Therefore, we conclude that the beginning of the Atlantic was characterized not only by dry but also by warm climatic conditions, which triggered a higher productivity in the lake. In the Subatlantic sediments, large variations in carbon, oxygen, and sulfur isotope ratios were observed as a result of human activities, causing considerable perturbations in the biogeochemical element cycling of Lake Steisslingen. Results obtained by the study of the continuous 15 ka record of Lake Steisslingen document clearly that isotopic proxy data from lacustrine sediments can provide useful information on environmental and climatic changes of local, regional, and in the case of the Younger Dryas event, of even hemispherical significance.
Resumo:
Transient simulations are widely used in studying the past climate as they provide better comparison with any exisiting proxy data. However, multi-millennial transient simulations using coupled climate models are usually computationally very expensive. As a result several acceleration techniques are implemented when using numerical simulations to recreate past climate. In this study, we compare the results from transient simulations of the present and the last interglacial with and without acceleration of the orbital forcing, using the comprehensive coupled climate model CCSM3 (Community Climate System Model 3). Our study shows that in low-latitude regions, the simulation of long-term variations in interglacial surface climate is not significantly affected by the use of the acceleration technique (with an acceleration factor of 10) and hence, large-scale model-data comparison of surface variables is not hampered. However, in high-latitude regions where the surface climate has a direct connection to the deep ocean, e.g. in the Southern Ocean or the Nordic Seas, acceleration-induced biases in sea-surface temperature evolution may occur with potential influence on the dynamics of the overlying atmosphere. The data provided here are from both accelerated and non-accelerated runs as decadal mean values.