281 resultados para Prokaryotes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 190 was programmed to investigate deformational, diagenetic, and hydrologic processes and their interactions in the Nankai Trough accretionary prism. Site 1178 is the northernmost site in the Muroto Transect. Slope sediments and the underlying landward-dipping reflector zone were successfully cored. Temperature measurements and Cl concentrations in pore water indirectly indicate the presence of gas hydrate between 120 and 400 meters below seafloor (mbsf) at Site 1178, with the highest concentrations between 150 and 200 mbsf (Shipboard Scientific Party, 2001, doi:10.2973/odp.proc.ir.190.109.2001). Sedimentary structures show a broad range of deformation structures rich in fractures, suggesting active fluid circulation in the Nankai Trough prism. One of the objectives of Leg 190 was to clarify the interplay of various fundamental processes taking place in the Nankai Trough accretionary prism. Bacteria or prokaryotes in deep subsurface sediment play an important role for material transformation and circulation in an accretionary prism. Significant amounts of bacteria are detected in many of the samples examined (Shipboard Scientific Party, 2001, doi:10.2973/odp.proc.ir.190.109.2001). The type of organic matter in sediments is an important factor related to bacterial activity. To assist investigations on material circulation in deep subsurface sediments, the samples from Site 1178 were analyzed for geolipids (extractable organic matter). The basic data set is preliminarily compiled in the present report to show the types of organic matter and their concentrations in sediments from Site 1178.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considering the important role of N2 fixation for primary productivity and CO2 sequestration, it is crucial to assess the response of diazotrophs to ocean acidification. Previous studies on the genus Trichodesmium suggested a strong sensitivity towards ocean acidification. In view of the large functional diversity in N2 fixers, the objective of this study was to improve our knowledge of the CO2 responses of other diazotrophs. To this end, the single-celled Cyanothece sp. and two heterocystous species, Nodularia spumigena and the symbiotic Calothrix rhizosoleniae, were acclimated to two pCO2 levels (380 vs. 980 µatm). Growth rates, cellular composition (carbon, nitrogen and chlorophyll a) as well as carbon and N2 fixation rates (14C incorporation, acetylene reduction) were measured and compared to literature data on different N2 fixers. The three species investigated in this study responded differently to elevated pCO2, showing enhanced, decreased as well as unaltered growth and production rates. For instance, Cyanothece increased production rates with pCO2, which is in line with the general view that N2 fixers benefit from ocean acidification. Due to lowered growth and production of Nodularia, nitrogen input to the Baltic Sea might decrease in the future. In Calothrix, no significant changes in growth or production could be observed, even though N2 fixation was stimulated under elevated pCO2. Reviewing literature data confirmed a large variability in CO2 sensitivity across diazotrophs. The contrasting response patterns in our and previous studies were discussed with regard to the carbonate chemistry in the respective natural habitats, the mode of N2 fixation as well as differences in cellular energy limitation between the species. The group-specific CO2 sensitivities will impact differently on future biogeochemical cycles of open-ocean environments and systems like the Baltic Sea and should therefore be considered in models estimating climate feedback effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To predict effects of climate change and possible feedbacks, it is crucial to understand the mechanisms behind CO2 responses of biogeochemically relevant phytoplankton species. Previous experiments on the abundant N2 fixers Trichodesmium demonstrated strong CO2 responses, which were attributed to an energy reallocation between its carbon (C) and nitrogen (N) acquisition. Pursuing this hypothesis, we manipulated the cellular energy budget by growing Trichodesmium erythraeum IMS101 under different CO2 partial pressure (pCO2) levels (180, 380, 980 and 1400?µatm) and N sources (N2 and NO3-). Subsequently, biomass production and the main energy-generating processes (photosynthesis and respiration) and energy-consuming processes (N2 fixation and C acquisition) were measured. While oxygen fluxes and chlorophyll fluorescence indicated that energy generation and its diurnal cycle was neither affected by pCO2 nor N source, cells differed in production rates and composition. Elevated pCO2 increased N2 fixation and organic C and N contents. The degree of stimulation was higher for nitrogenase activity than for cell contents, indicating a pCO2 effect on the transfer efficiency from N2 to biomass. pCO2-dependent changes in the diurnal cycle of N2 fixation correlated well with C affinities, confirming the interactions between N and C acquisition. Regarding effects of the N source, production rates were enhanced in NO3-grown cells, which we attribute to the higher N retention and lower ATP demand compared with N2 fixation. pCO2 effects on C affinity were less pronounced in NO3- users than N2 fixers. Our study illustrates the necessity to understand energy budgets and fluxes under different environmental conditions for explaining indirect effects of rising pCO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On-deck CO2-Fe-manipulated incubation experiments were conducted using surface seawater collected from the Western Subarctic Gyre of the NW Pacific in the summer of 2008 to elucidate the impacts of ocean acidification and Fe enrichment on the abundance and community composition of phytoplankton and eubacteria in the study area. During the incubation, excluding the initial period, the mean partial pressures of CO2 in non-Fe-added bottles were 230, 419, 843, and 1124 µatm, whereas those in Fe-added treatments were 152, 394, 791, and 1008 µatm. Changes in the abundance and community composition of phytoplankton were estimated using HPLC pigment signatures with the program CHEMTAX and flow cytometry. A DGGE fingerprint technique targeting 16S rRNA gene fragments was also used to estimate changes in eubacterial phylotypes during incubation. The Fe addition induced diatom blooms, and subsequently stimulated the growth of heterotrophic bacteria such as Roseobacter, Phaeobacter, and Alteromonas in the post-bloom phase. In both the Fe-limited and Fe-replete treatments, concentrations of 19'-hexanoyloxyfucoxanthin, a haptophyte marker, and the cell abundance of coccolithophores decreased at higher CO2 levels (750 and 1000 ppm), whereas diatoms exhibited little response to the changes in CO2 availability. The abundances of Synechococcus and small eukaryotic phytoplankton (<10 µm) increased at the higher CO2 levels. DGGE band positions revealed that Methylobacterium of Alphaproteobacteria occurred solely at lower CO2 levels (180 and 380 ppm) during the post-bloom phase. These results suggest that increases in CO2 level could affect not only the community composition of phytoplankton but also that of eubacteria. As these microorganisms play critical roles in the biological carbon pump and microbial loop, our results indicate that the progression of ocean acidification can alter the biogeochemical processes in the study area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rising anthropogenic CO2 emissions acidify the oceans, and cause changes to seawater carbon chemistry. Bacterial biofilm communities reflect environmental disturbances and may rapidly respond to ocean acidification. This study investigates community composition and activity responses to experimental ocean acidification in biofilms from the Australian Great Barrier Reef. Natural biofilms grown on glass slides were exposed for 11 d to four controlled pCO2 concentrations representing the following scenarios: A) pre-industrial (~300 ppm), B) present-day (~400 ppm), C) mid century (~560 ppm) and D) late century (~1140 ppm). Terminal restriction fragment length polymorphism and clone library analyses of 16S rRNA genes revealed CO2-correlated bacterial community shifts between treatments A, B and D. Observed bacterial community shifts were driven by decreases in the relative abundance of Alphaproteobacteria and increases of Flavobacteriales (Bacteroidetes) at increased CO2 concentrations, indicating pH sensitivity of specific bacterial groups. Elevated pCO2 (C + D) shifted biofilm algal communities and significantly increased C and N contents, yet O2 fluxes, measured using in light and dark incubations, remained unchanged. Our findings suggest that bacterial biofilm communities rapidly adapt and reorganize in response to high pCO2 to maintain activity such as oxygen production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental results related to the effects of ocean acidification on planktonic marine microbes are still rather inconsistent and occasionally contradictory. Moreover, laboratory or field experiments that address the effects of changes in CO2 concentrations on heterotrophic microbes are very scarce, despite the major role of these organisms in the marine carbon cycle. We tested the direct effect of an elevated CO2 concentration (1000 ppmv) on the biomass and metabolic rates (leucine incorporation, CO2 fixation and respiration) of 2 isolates belonging to 2 relevant marine bacterial families, Rhodobacteraceae (strain MED165) and Flavobacteriaceae (strain MED217). Our results demonstrate that, contrary to some expectations, high pCO2 did not negatively affect bacterial growth but increased growth efficiency in the case of MED217. The elevated partial pressure of CO2 (pCO2) caused, in both cases, higher rates of CO2 fixation in the dissolved fraction and, in the case of MED217, lower respiration rates. Both responses would tend to increase the pH of seawater acting as a negative feedback between elevated atmospheric CO2 concentrations and ocean acidification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As part of the PeECE II mesocosm project, we investigated the effects of pCO2 levels on the initial step of heterotrophic carbon cycling in the surface ocean. The activities of microbial extracellular enzymes hydrolyzing 4 polysaccharides were measured during the development of a natural phytoplankton bloom under pCO2 conditions representing glacial (190 µatm) and future (750 µatm) atmospheric pCO2. We observed that (1) chondroitin hydrolysis was variable throughout the pre-, early- and late-bloom phases, (2) fucoidanase activity was measurable only in the glacial mesocosm as the bloom developed, (3) laminarinase activity was low and constant, and (4) xylanase activity declined as the bloom progressed. Concurrent measurements of microbial community composition, using denaturing-gradient gel electrophoresis (DGGE), showed that the 2 mesocosms diverged temporally, and from one another, especially in the late-bloom phase. Enzyme activities correlated with bloom phase and pCO2, suggesting functional as well as compositional changes in microbial communities in the different pCO2 environments. These changes, however, may be a response to temporal changes in the development of phytoplankton communities that differed with the pCO2 environment. We hypothesize that the phytoplankton communities produced dissolved organic carbon (DOC) differing in composition, a hypothesis supported by changing amino acid composition of the DOC, and that enzyme activities responded to changes in substrates. Enzyme activities observed under different pCO2 conditions likely reflect both genetic and population-level responses to changes occurring among multiple components of the microbial loop.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A future business-as-usual scenario (A1FI) was tested on two bloom-forming cyanobacteria of the Baltic Proper, Nodularia spumigena and Aphanizomenon sp., growing separately and together. The projected scenario was tested in two laboratory experiments where (a) interactive effects of increased temperature and decreased salinity and (b) interactive effects of increased temperature and elevated levels of pCO2 were tested. Increased temperature, from 12 to 16 °C, had a positive effect on the biovolume and photosynthetic activity (F v/F m) of both species. Compared when growing separately, the biovolume of each species was lower when grown together. Decreased salinity, from 7 to 4, and elevated levels of pCO2, from 380 to 960 ppm, had no effect on the biovolume, but on F v/F m of N. spumigena with higher F v/F m in salinity 7. Our results suggest that the projected A1FI scenario might be beneficial for the two species dominating the extensive summer blooms in the Baltic Proper. However, our results further stress the importance of studying interactions between species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated carbon acquisition by the N2-fixing cyanobacterium Trichodesmium IMS101 in response to CO2 levels of 15.1, 37.5, and 101.3 Pa (equivalent to 150, 370, and 1000 ppm). In these acclimations, growth rates as well as cellular C and N contents were measured. In vivo activities of carbonic anhydrase (CA), photosynthetic O2 evolution, and CO2 and HCO3- fluxes were measured using membrane inlet mass spectrometry and the 14C disequilibrium technique. While no differences in growth rates were observed, elevated CO2 levels caused higher C and N quotas and stimulated photosynthesis and N2 fixation. Minimal extracellular CA (eCA) activity was observed, indicating a minor role in carbon acquisition. Rates of CO2 uptake were small relative to total inorganic carbon (Ci) fixation, whereas HCO{3 contributed more than 90% and varied only slightly over the light period and between CO2 treatments. The low eCA activity and preference for HCO3- were verified by the 14C disequilibrium technique. Regarding apparent affinities, half-saturation concentrations (K1/2) for photosynthetic O2 evolution and HCO3- uptake changed markedly over the day and with CO2 concentration. Leakage (CO2 efflux : Ci uptake) showed pronounced diurnal changes. Our findings do not support a direct CO2 effect on the carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) but point to a shift in resource allocation among photosynthesis, carbon acquisition, and N2 fixation under elevated CO2 levels. The observed increase in photosynthesis and N2fixation could have potential biogeochemical implications, as it may stimulate productivity in N-limited oligotrophic regions and thus provide a negative feedback in rising atmospheric CO2 levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of ocean warming and acidification was investigated on a natural plankton assemblage from an oligotrophic area, the bay of Villefranche (NW Mediterranean Sea). The assemblage was sampled in March 2012 and exposed to the following four treatments for 12 days: control ( 360 µatm, 14°C), elevated pCO2 ( 610 µatm, 14°C), elevated temperature ( 410 µatm, 17°C), and elevated pCO2 and temperature ( 690 µatm, 17°C). Nutrients were already depleted at the beginning of the experiment and the concentrations of chlorophyll a (chl a), heterotrophic prokaryotes and viruses decreased, under all treatments, throughout the experiment. There were no statistically significant effects of ocean warming and acidification, whether in isolation or combined, on the concentrations of nutrients, particulate organic matter, chl a and most of the photosynthetic pigments. Furthermore, 13C labelling showed that the carbon transfer rates from 13C-sodium bicarbonate into particulate organic carbon were not affected by seawater warming nor acidification. Rates of gross primary production followed the general decreasing trend of chl a concentrations and were significantly higher under elevated temperature, an effect exacerbated when combined to elevated pCO2 level. In contrast to the other algal groups, the picophytoplankton population (cyanobacteria, mostly Synechococcus) increased throughout the experiment and was more abundant in the warmer treatment though to a lesser extent when combined to high pCO2 level. These results suggest that under nutrient-depleted conditions in the Mediterranean Sea, ocean acidification has a very limited impact on the plankton community and that small species will benefit from warming with a potential decrease of the export and energy transfer to higher trophic levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sea-ice diatoms are known to accumulate in large aggregates in and under the sea ice including melt ponds. In the Arctic, they can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not yet well understood, and may vary in relation to the fate of the Arctic sea-ice cover. To elucidate the mechanism controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Dense, spherical aggregates composed mainly of pennate diatoms, and filamentous aggregates formed by Melosira arctica were found in different degradation stages, with carbon to Chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8-35 and 9-40, respectively. Fresh sub-ice algal aggregate densities ranged between 1 and 17 aggregates/m**2, corresponding to a net primary production of 0.4-40 mg C/m**2/d, contributing 3-80% of total biomass and up to 94% of total production at a local scale. A key factor controlling buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and flotation by gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data was used to evaluate the factors regulating the distribution and importance of the Arctic algal aggregates as carbon source for pelagic and benthic communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification may stimulate primary production through increased availability of inorganic carbon in the photic zone, which may in turn change the biogenic flux of dissolved organic carbon (DOC) and the growth potential of heterotrophic bacteria. To investigate the effects of ocean acidification on marine bacterial assemblages, a two-by-three factorial mescosom experiment was conducted using surface sea water from the East Greenland Current in Fram Strait. Pyrosequencing of the V1-V2 region of bacterial 16S ribosomal RNA genes was used to investigate differences in the endpoint (Day 9) composition of bacterial assemblages in mineral nutrient-replete mesocosms amended with glucose (0 µm, 5.3 µm and 15.9 µm) under ambient (250 µatm) or acidified (400 µatm) partial pressures of CO2 (pCO2). All mesocosms showed low richness and diversity by Chao1 estimator and Shannon index, respectively, with general dominance by Gammaproteobacteria and Flavobacteria. Nonmetric multidimensional scaling analysis and two-way analysis of variance of the Jaccard dissimilarity matrix (97% similarity cut-off) demonstrated that the significant community shift between 0 µm and 15.9 µm glucose addition at 250 µatm pCO2 was eliminated at 400 µatm pCO2. These results suggest that the response potential of marine bacteria to DOC input may be altered under acidified conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of CO2-induced seawater acidification on plankton communities were also addressed in a series of 3 mesocosm experiments, called the Pelagic Ecosystem CO2 Enrichment (PeECE I-III) studies, which were conducted in the Large-Scale Mesocosm Facilities of the University of Bergen, Norway in 2001, 2003 and 2005, respectively. Each experiment consisted of 9 mesocosms, in which CO2 was manipulated to initial concentrations of 190, 350 and 750 µatm in 2001 and 2003, and 350, 700 and 1050 µatm in 2005. The present dataset concerns PeECE I.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microbial population in samples of basalt drilled from the north of the Australian Antarctic Discordance (AAD) during Ocean Drilling Program Leg 187 were studied using deoxyribonucleic acid (DNA)-based methods and culturing techniques. The results showed the presence of a microbial population characteristic for the basalt environment. DNA sequence analysis revealed that microbes grouping within the Actinobacteria, green nonsulfur bacteria, the Cytophaga/Flavobacterium/Bacteroides (CFB) group, the Bacillus/Clostridium group, and the beta and gamma subclasses of the Proteobacteria were present in the basalt samples collected. The most dominant phylogenetic group, both in terms of the number of sequences retrieved and the intensities of the DNA bands obtained with the denaturing gradient gel electrophoresis analysis, was the gamma Proteobacteria. Enrichment cultures showed phylogenetic affiliation with the Actinobacteria, the CFB group, the Bacillus/Clostridium group, and the alpha, beta, gamma, and epsilon subclasses of the Proteobacteria. Comparison of native and enriched samples showed that few of the microbes found in native basalt samples grew in the enrichment cultures. Only seven clusters, two clusters within each of the CFB and Bacillus/Clostridium groups and five clusters within the gamma Proteobacteria, contained sequences from both native and enriched basalt samples with significant similarity. Results from cultivation experiments showed the presence of the physiological groups of iron reducers and methane producers. The presence of the iron/manganese-reducing bacterium Shewanella was confirmed with DNA analysis. The results indicate that iron reducers and lithotrophic methanogenic Archaea are indigenous to the ocean crust basalt and that the methanogenic Archaea may be important primary producers in this basaltic environment.