315 resultados para Prism Yearbooks
Resumo:
On the basis of lithologic, foraminiferal, seismostratigraphic, and downhole logging characteristics, we identified seven distinctive erosional unconformities at the contacts of the principal depositional sequences at Site 612 on the New Jersey Continental Slope (water depth 1404 m). These unconformities are present at the Campanian/Maestrichtian, lower Eocene/middle Eocene, middle Eocene/upper Eocene, upper Eocene/lower Oligocene, lower Oligocene/upper Miocene, Tortonian/Messinian, and upper Pliocene/upper Pleistocene contacts. The presence of coarse sand or redeposited intraclasts above six of the unconformities suggests downslope transport from the adjacent shelf by means of sediment gravity flows, which contributed in part to the erosion. Changes in the benthic foraminiferal assemblages across all but the Campanian/Maestrichtian contact indicate that significant changes in the seafloor environment, such as temperature and dissolved oxygen content, took place during the hiatuses. Comparison with modern analogous assemblages and application of a paleoslope model where possible, indicate that deposition took place in bathyal depths throughout the Late Cretaceous and Cenozoic at Site 612. An analysis of two-dimensional geometry and seismic fades changes of depositional sequences along U.S.G.S. multichannel seismic Line 25 suggests that Site 612 was an outer continental shelf location from the Campanian until the middle Eocene, when the shelf edge retreated 130 km landward, and Site 612 became a continental slope site. Following this, a prograding prism of terrigenous debris moved the shelf edge to near its present position by the end of the Miocene. Each unconformity identified can be traced widely on seismic reflection profiles and most have been identified from wells and outcrops on the coastal plain and other offshore basins of the U.S. Atlantic margin. Furthermore, their stratigraphic positions and equivalence to similar unconformities on the Goban Spur, in West Africa, New Zealand, Australia, and the Western Interior of the U.S. suggest that most contacts are correlative with the global unconformities and sea-level falls of the Vail depositional model.
Resumo:
Sediments undergoing accretion in trench-forearc systems are subjected to conditions of large lateral thrusting. This stress regime controls the mechanism of faulting as well as the yield and strength properties of the sediment. Understanding them is therefore crucial for the construction of quantitative models of sediment dynamics in convergent margin settings. For this purpose triaxial and oedometer tests were performed on six whole-round core samples recovered from Site 808 from depths between 173 and 705 mbsf. Samples from five depth intervals were subjected to a triaxial test program that was primarily designed to define yield and strength behavior. Test specimens were cut parallel and normal to the core axis. Additional five oedometer tests with similarly prepared specimens were performed on samples from four depth intervals to evaluate the directional state and degree of sediment compaction. Test results show that the degree of sediment compaction is higher than expected from overburden. This overcompaction increases with depth. A well-developed mechanical anisotropy is evident in all samples tested, regardless of their depth and lithology. Values of yield limit, stiffness, and shear strength are up to 40% higher in the horizontal direction compared to the vertical direction. In addition the test data demonstrate that the axis of the volumetric yield loci have rotated into extensional stress field. This verifies that the mechanical state of sediment in the accretionary wedge is controlled by in-situ stress conditions of extensional nature. The coefficients of lateral stress inferred suggest that the extensional stress regime becomes increasingly effective with depth.
Resumo:
X-ray diffraction analyses of the clay-sized fraction of sediments from the Nankai Trough and Shikoku Basin (Sites 1173, 1174, and 1177 of the Ocean Drilling Program) reveal spatial and temporal trends in clay minerals and diagenesis. More detrital smectite was transported into the Shikoku Basin during the early-middle Miocene than what we observe today, and smectite input decreased progressively through the late Miocene and Pliocene. Volcanic ash has been altered to dioctahedral smectite in the upper Shikoku Basin facies at Site 1173; the ash alteration front shifts upsection to the outer trench-wedge facies at Site 1174. At greater depths (lower Shikoku Basin facies), smectite alters to illite/smectite mixed-layer clay, but reaction progress is incomplete. Using ambient geothermal conditions, a kinetic model overpredicts the amount of illite in illite/smectite clays by 15%-20% at Site 1174. Numerical simulations come closer to observations if the concentration of potassium in pore water is reduced or the time of burial is shortened. Model results match X-ray diffraction results fairly well at Site 1173. The geothermal gradient at Site 1177 is substantially lower than at Sites 1173 and 1174; consequently, volcanic ash alters to smectite in lower Shikoku Basin deposits but smectite-illite diagenesis has not started. The absolute abundance of smectite in mudstones from Site 1177 is sufficient (30-60 wt%) to influence the strata's shear strength and hydrogeology as they subduct along the Ashizuri Transect.
Resumo:
We studied the stable isotopic and carbonate stratigraphy of ODP Hole 704A to reconstruct the paleoceanographic evolution of the eastern subantarctic sector of the South Atlantic Ocean. Site 704 is well positioned with respect to latitude (46°52.8'S, 7°25.3'E) and bathymetry (2532 m) to monitor past migrations in the position of Polar Front Zone (PFZ) and changes in deep-water circulation during the late Pliocene-Pleistocene. Several important changes occurred in proxy paleoceanographic indicators across the Gauss/Matuyama boundary at 2.47 Ma: (1) accumulation rates of biogenic sedimentary components increased by an order of magnitude (Froelich et al., this volume); (2) planktonic d1 8O values increased by an average of 0.5 per mil; (3) the amplitude of the benthic d18O signal increased; (4) the accumulation rate of ice-rafted detritus increased several fold (Warnke and Allen, this volume); and (5) carbon isotopic ratios of benthic foraminifers decreased by 0.5 per mil, as did the d13C of the fine-fraction carbonate by 1.5 per mil (Mead et al., 1991, doi:10.2973/odp.proc.sr.114.152.1991), but no change occurred in planktonic foraminiferal d13C values. Most of these changes are consistent with more frequent expansions and contractions of the PFZ over Site 704 after 2.47 Ma, bringing cold, nutrient-rich waters to 47°S that stimulated both carbonate and siliceous productivity. The synchronous increase in d18O values and ice-rafted detritus accumulation in Hole 704A indicates that the 2.4 Ma paleoceanographic event included ice volume growth on both Antarctica and Northern Hemisphere continents. The decrease in benthic d13C values indicates that the ventilation rate of Southern Ocean deep water decreased and the nutrient content increased during glacial events after 2.5 Ma. At the Gauss/Matuyama boundary, benthic d13C values of the Southern Ocean shifted toward those of the Pacific end member, indicating a decrease in the relative mixing ratio of Northern Component Water and Circumpolar Deep Water. During the early Matuyama (~2.3 to 1.7 Ma), the PFZ generally occupied a southerly position with respect to Site 704 and carbonate productivity prevailed. Exceptions to these general conditions occurred during strong glacial events of the early Matuyama (e.g., isotopic stages 82, 78, 74, and 70), when the PFZ migrated to the north and opal sedimentation predominated at Site 704. At 1.7 Ma, the PFZ migrated toward the equator and occupied a more northerly position for a prolonged interval between ~1.7 and 1.5 Ma. Beginning at ~1.5-1.4 Ma, surface and bottom water parameters (d18O, d13C, %CaCO3, and %opal) in the subantarctic South Atlantic became highly correlated such that glacial events (d18O maxima) corresponded to d13C and carbonate minima and opal maxima. This pattern is typical of the correlation found during the latest Pleistocene in the Southern Ocean (Charles and Fairbanks, in press). This event coincided with increased suppression of Northern Component Water during glacial events after 1.5 Ma (Raymo et al., 1990, doi:10.1016/0012-821X(90)90051-X), which may have influenced the climatology of the Southern Hemisphere by altering the flux of heat and salt to the Southern Ocean).
Resumo:
The anisotropy of magnetic susceptibility documents the generation of tectonically produced fabrics in sediments that macroscopically show no evidence of this disruption. The fabric observed in initial accretion is largely produced by overprinting of the original sedimentary susceptibility anisotropy by an E-W horizontal tectonic shortening and vertical extension. The response of the sediments to stress during initial accretion is variable, particularly near the sediment surface, and appears to reflect the inhomogeneous distribution of strain rate in the overthrust sequence. The susceptibility anisotropy of sediments possessing scaly fabric is consistent with the strong orientation of Phyllosilicates seen in thin section, producing a Kmin normal to the scalyness. The slope sediments deposited on the accreted sequence are also affected by tectonic shortening. The accreted sequences at Sites 673 and 674 show a complex history of fabric modification, with previous tectonic fabrics overprinted by later fabric modifications, pointing to continued tectonic shortening during the accretion process. The form of the susceptibility anisotropy axes at Sites 673 and 674 is consistent with NESW shortening, probably reflected in the NW-SE surface expression of the out-of-sequence thrusts. The susceptibility anisotropy appears to document a downhole change in the trend of shortening from E to W at the surface to more NESW at depth, probably as a result of the obliquely trending basement ridge, the Tiburon Rise.
Resumo:
We tested the hypothesis that development of the Antarctic urchin Sterechinus neumayeri under future ocean conditions of warming and acidification would incur physiological costs, reducing the tolerance of a secondary stressor. The aim of this study is twofold: (1) quantify current austral spring temperature and pH near sea urchin habitat at Cape Evans in McMurdo Sound, Antarctica and (2) spawn S. neumayeri in the laboratory and raise early developmental stages (EDSs) under ambient (-0.7 °C; 400 µatm pCO2) and future (+2.6 °C; 650 and 1,000 µatm pCO2) ocean conditions and expose four EDSs (blastula, gastrula, prism, and 4-arm echinopluteus) to a one hour acute heat stress and assess survivorship. Results of field data from 2011 to 2012 show extremely stable inter-annual pH conditions ranging from 7.99 to 8.08, suggesting that future ocean acidification will drastically alter the pH-seascape for S. neumayeri. In the laboratory, S. neumayeri EDSs appear to be tolerant of temperatures and pCO2 levels above their current habitat conditions. EDSs survived acute heat exposures >20 °C above habitat temperatures of -1.9 °C. No pCO2 effect was observed for EDSs reared at -0.7 °C. When reared at +2.6 °C, small but significant pCO2 effects were observed at the blastula and prism stage, suggesting that multiple stressors are more detrimental than single stressors. While surprisingly tolerant overall, blastulae were the most sensitive stage to ocean warming and acidification. We conclude that S. neumayeri may be unexpectedly physiologically tolerant of future ocean conditions.
Resumo:
Environmental Education (EE) is a key component in any marine protected area management. However, its visibility and action plans are still poorly developed and structured as a clear element in management procedures. The objective of this study is to contribute with a methodological route that integrates EE to the existing model of management planning and strategies, taking the Colombian National Natural Parks System as a case study. The creation of the route is proposed as a participatory research with different stakeholders in order to respond to the specific conservation needs and goals for the National Parks System. The EE national diagnosis has shown that its integration within the parks management structure is a first priority need, being a converging result on the two case studies on National Parks from the Pacific Coast of Colombia. The diagnosis also demonstrates that communication, participation, training and evaluation have to be reinforced, linking the community and stakeholders involved in the park management to the whole EE process. The proposed methodology route has been agreed upon by the National Parks staff and incorporates advice and recommendations from different stakeholders, in order to better include the park users. This step will help us to advance toward sustainable management in marine and coastal protected areas elsewhere, taking into account not only the biological but also the social-cultural prism. The main challenges in the management and conservation of coastal and marine ecosystems today are discussed.
Resumo:
To investigate late Quaternary paleoclimatic and paleoceanographic change in the sedimentary record, preserved on the Australian Continental Margin during the late Quaternary, core material was collected from Ocean Drilling Program, Leg 133, Site 819. An expanded sequence of late Quaternary, rhythmically bedded, predominantly hemipelagic sediments were recovered from Hole 819A. The foraminiferal d18O record preserved at Hole 819A suggests that the late Quaternary section is incomplete. Both benthic and planktonic d18O stratigraphies can be traced tentatively downcore to stage 6 at about 32.5 mbsf, where a major hiatus occurs. At this level, a slump detachment surface has been identified (Shipboard Scientific Party, 1991). This slump has removed marine oxygen isotope stages 7 to 13. Below 32.5 mbsf, continuous correlation can be achieved in the planktonic d18O curve, with existing deep-sea foraminiferal oxygen isotope stratigraphies from stage 14 through stage 28. The major hiatus at 32.5 mbsf marks the position of a significant change in the character of the sedimentation at Site 819. Sediments below 32.5 mbsf, relative to those above 32.5 mbsf, are characterized by less variation in mean particle size; lower percentages of carbonate content in the coarse fraction (>63 µm); a stronger relationship between the percentage of fine fraction and magnetic mineral concentration, and lower foraminiferal abundances. Above the hiatus, large fluctuations in mean particle size occurred, which have been interpreted to be the result of high foraminiferal abundances. Early highstands show high terrigenous influx in the fine fraction above the hiatus. This is the opposite of the general idea of high terrigenous influx during lowstands of sea level on siliciclastic dominated continental margins. We are far from understanding the origin of this material and further investigation will be required (see also Glenn et al., this volume). All our records, except the planktonic foraminiferal oxygen isotope record, indicate that the major hiatus marks the position of a significant change in the environment at Site 819. The planktonic foraminiferal d18O record suggests that environmental change occurred prior to the formation of the hiatus (i.e., near the Brunhes/Matuyama [B/M] boundary). The interval between the B/M boundary and the hiatus represents a transitional period between two different patterns of ocean circulation. Throughout most of the lower part of the sequence, Site 819 was at a shallow-water depth and local oceanographic conditions were dominated by sluggish Subtropical Central Water (SCW) flow. However, near the B/M boundary, ocean circulation patterns intensified, reflecting a worldwide change in paleoenvironment. Enhanced ocean circulation patterns were possibly aided by tectonic subsidence. During this period Site 819 became progressively more under the influence of Antarctic Intermediate Water (AAIW), than SCW. In the upper part of the sequence at Hole 819 A, we see a continuation of the pattern of oceanographic reorganization suggested during stages 21 through 14. Intensification of the subsurface oceanographic circulation was also accompanied by the progressive wedging southward of surface waters associated with the East Australian Current (EAC). The change in the nature of the records in the lower and upper parts of the sequence at Site 819 are thought to reflect perturbations by the orbital eccentricity cycle.
Resumo:
At subduction zones, the permeability of major fault zones influences pore pressure generation, controls fluid flow pathways and rates, and affects fault slip behavior and mechanical strength by mediating effective normal stress. Therefore, there is a need for detailed and systematic permeability measurements of natural materials from fault systems, particularly measurements that allow direct comparison between the permeability of sheared and unsheared samples from the same host rock or sediment. We conducted laboratory experiments to compare the permeability of sheared and uniaxially consolidated (unsheared) marine sediments sampled during IODP Expedition 316 and ODP Leg 190 to the Nankai Trough offshore Japan. These samples were retrieved from: (1) The décollement zone and incoming trench fill offshore Shikoku Island (the Muroto transect); (2) Slope sediments sampled offshore SW Honshu (the Kumano transect) ~ 25 km landward of the trench, including material overriden by a major out-of-sequence thrust fault, termed the "megasplay"; and (3) A region of diffuse thrust faulting near the toe of the accretionary prism along the Kumano transect. Our results show that shearing reduces fault-normal permeability by up to 1 order of magnitude, and this reduction is largest for shallow (< 500 mbsf) samples. Shearing-induced permeability reduction is smaller in samples from greater depth, where pre-existing fabric from compaction and lithification may be better developed. Our results indicate that localized shearing in fault zones should result in heterogeneous permeability in the uppermost few kilometers in accretionary prisms, which favors both the trapping of fluids beneath and within major faults, and the channeling of flow parallel to fault structure. These low permeabilities promote the development of elevated pore fluid pressures during accretion and underthrusting, and will also facilitate dynamic hydrologic processes within shear zones including dilatancy hardening and thermal pressurization.
Resumo:
The first experimentally determined temperature dependent oxygen-18 fractionation factor between dolomite and water at low temperatures [Vasconcelos et al. 1995 doi:10.1130/G20992.1] allows now the precise calculation of temperatures during early diagenetic dolomite precipitation. We use d18O values of early diagenetic dolomite beds sampled during ODP Legs 112 and 201 on the Peru continental margin (Sites 1227, 1228 and 1229) [Meister et al. 2007, doi:10.1111/j.1365-3091.2007.00870.x] to calculate paleo-porewater temperatures at the time of dolomite precipitation. We assumed unaltered seawater d18O values in the porewater, which is supported by d18O values of the modern porewater presented in this study. The dolomite layers in the Pleistocene part of the sedimentary columns showed oxygen isotope temperatures up to 5 °C lower than today. Since Sites 1228 and 1229 are located at 150 and 250 m below sealevel, respectively, their paleo-porewater temperatures would be influenced by considerably colder surface water during glacial sealevel lowstands. Thus, Pleistocene dolomite layers in the Peru Continental margin probably formed during glacial times. This finding is consistent with a model for dolomite precipitation in the Peru Margin recently discussed by Meister et al. [Meister et al. 2007, doi:10.1111/j.1365-3091.2007.00870.x], where dolomite forms episodically at the sulphate methane interface. It was shown that the sulphate methane interface migrates upwards and downwards within the sedimentary column, but dolomite layers may only form when the sulphate-methane interface stays at a fixed depth for a sufficient amount of time. We hypothesize that the sulphate-methane interface persists within TOC-rich interglacial sediments, while this zone is buried by TOC-poor sedimentation during glacial times. Thus, the presented oxygen isotope data provide additional information on the timing of early diagenetic dolomite formation and a possible link between episodicity in dolomite formation and sealevel variations. A similar link between early diagenesis and oceanography may also explain spacing of dolomite layers in a Milankovitch type pattern observed in the geological record, such as in the Miocene Monterey Formation.
Resumo:
Ocean Drilling Program (ODP) Leg 190 was programmed to investigate deformational, diagenetic, and hydrologic processes and their interactions in the Nankai Trough accretionary prism. Site 1178 is the northernmost site in the Muroto Transect. Slope sediments and the underlying landward-dipping reflector zone were successfully cored. Temperature measurements and Cl concentrations in pore water indirectly indicate the presence of gas hydrate between 120 and 400 meters below seafloor (mbsf) at Site 1178, with the highest concentrations between 150 and 200 mbsf (Shipboard Scientific Party, 2001, doi:10.2973/odp.proc.ir.190.109.2001). Sedimentary structures show a broad range of deformation structures rich in fractures, suggesting active fluid circulation in the Nankai Trough prism. One of the objectives of Leg 190 was to clarify the interplay of various fundamental processes taking place in the Nankai Trough accretionary prism. Bacteria or prokaryotes in deep subsurface sediment play an important role for material transformation and circulation in an accretionary prism. Significant amounts of bacteria are detected in many of the samples examined (Shipboard Scientific Party, 2001, doi:10.2973/odp.proc.ir.190.109.2001). The type of organic matter in sediments is an important factor related to bacterial activity. To assist investigations on material circulation in deep subsurface sediments, the samples from Site 1178 were analyzed for geolipids (extractable organic matter). The basic data set is preliminarily compiled in the present report to show the types of organic matter and their concentrations in sediments from Site 1178.
Resumo:
Land-based aquaculture facilities often utilize additional bicarbonate sources such as commercial sea salts that are designed to boost alkalinity in order to buffer seawater against reductions in pH. Despite these preventative measures, many facilities are likely to face occasional reductions in pH and corresponding reductions in carbonate saturation states due to the accumulation of metabolic waste products. We investigated the impact of reduced carbonate saturation states (Omega Ca, Omega Ar) on embryonic developmental rates, larval developmental rates, and echinoplutei skeletal morphometrics in the common edible sea urchin Lytechinus variegatus under high alkalinity conditions. Commercial artificial seawater was bubbled with a mixture of air and CO2 gas to reduce the carbonate saturation state. Rates of embryonic and larval development were significantly delayed in both the low and extreme low carbonate saturation state groups relative to the control at a given time. Although symmetry of overall skeletal body lengths was not affected, allometric relationships were significantly different between treatment groups. Larvae reared under ambient conditions had significantly greater postoral arm and overall body lengths relative to body lengths than larvae grown under extreme low carbonate saturation state conditions, indicating that extreme changes in the carbonate system affected not only developmental rates but also larval skeletal shape. Reduced rates of embryonic development and delayed and altered larval skeletal growth are likely to negatively impact larval culturing of L. variegatus in land-based, intensive culture situations where calcite and aragonite saturation states are lowered by the accumulation of metabolic waste products.
Resumo:
Authigenic carbonates forming at an active methane-seep on the Makran accretionary prism mainly consist of aragonite in the form of microcrystalline, cryptocrystalline, and botryoidal phases. The d13Ccarbonate values are very negative (-49.0 to -44.0 per mill V-PDB), agreeing with microbial methane as dominant carbon source. The d18Ocarbonate values are exclusively positive (+ 3.0 to + 4.5 per mill V-PDB) and indicate precipitation in equilibrium with seawater at bottom water temperatures. The content of rare earth elements and yttrium (REE + Y) determined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and solution ICP-MS varies for each aragonite variety, with early microcrystalline aragonite yielding the highest, cryptocrystalline aragonite intermediate, and later botryoidal aragonite the lowest REE + Y concentrations. Shale-normalised REE + Y patterns of different types of authigenic carbonate reflect distinct pore fluid compositions during precipitation: Microcrystalline aragonite shows high contents of middle rare earth elements (MREE), reflecting REE patterns ascribed to anoxic pore water. Cryptocrystalline aragonite exhibits a seawater-like REE + Y pattern at elevated total REE + Y concentrations, indicating higher concentrations of REEs in pore waters, which were influenced by seawater. Botryoidal aragonite is characterised by seawater-like REE + Y patterns at initial growth stages followed by an increase of light rare earth elements (LREE) with advancing crystal growth, reflecting changing pore fluid composition during precipitation of this cement. Conventional sample preparation involving micro-drilling of carbonate phases and subsequent solution ICP-MS does not allow to recognise such subtle changes in the REE + Y composition of individual carbonate phases. To be able to reconstruct the evolution of pore water composition during early diagenesis, an analytical approach is required that allows to track the changing elemental composition in a paragenetic sequence as well as in individual phases. High-resolution analysis of seep carbonates from the Makran accretionary prism by LA-ICP-MS reveals that pore fluid composition not only evolved in the course of the formation of different phases, but also changed during the precipitation of individual phases.
Resumo:
Ocean Drilling Program Leg 129 recovered chert, porcellanite, and radiolarite from Middle Jurassic to lower Miocene strata from the western Pacific that formed by different processes and within distinct host rocks. These cherts and porcellanites formed by (1) replacement of chalk or limestone, (2) silicification and in-situ silica phase-transformation of bedded clay-bearing biosiliceous deposits, (3) high-temperature silicification adjacent to volcanic flows or sills, and (4) silica phase-transformation of mixed biosiliceous-volcaniclastic sediments. Petrologic and O-isotopic studies highlight the key importance of permeability and time in controlling the formation of dense cherts and porcellanites. The formation of dense, vitreous cherts apparently requires the local addition and concentration of silica. The influence of permeability is shown by two examples, in which: (1) fragments of originally identical radiolarite that were differentially isolated from pore-water circulation by cement-filled fractures were silicified to different degrees, and (2) by the development of secondary porosity during the opal-CT to quartz inversion within conditions of negligible permeability. The importance of time is shown by the presence of quartz chert below, but not above, a Paleogene hiatus at Site 802, indicating that between 30 and 52 m.y. was required for the formation of quartz chert within calcareous-siliceous sediments. The oxygen-isotopic composition for all Leg 129 carbonate- and Fe/Mn-oxide-free whole-rock samples of chert and porcellanite range widely from d18O = 27.8 per mil to 39.8 per mil vs. V-SMOW. Opal-CT samples are consistently richer in 18O (34.1 per mil to 39.3 per mil) than quartz subsamples (27.8 per mil to 35.7 per mil). Using the O-isotopic fractionation expression for quartz-water of Knauth and Epstein (1976) and assuming d18Opore water = -1.0 per mil, model temperatures of formation are 7°-26°C for carbonate-replacement quartz cherts, 22°-25°C for bedded quartz cherts, and 32°-34°C for thermal quartz cherts. Large variations in O-isotopic composition exist at the same burial depth between co-existing silica phases in the same sample and within the same phase in adjacent lithologies. For example, quartz has a wide range of isotopic compositions within a single breccia sample; d18O = 33.4 per mil and 28.0 per mil for early and late stages of fracture-filling cementation, and 31.6 per mil and 30.2 per mil for microcrystalline quartz precipitation within enclosed chert and radiolarite fragments. Similarly, opal-CT d101 spacing varies across lithologic or diagenetic boundaries within single samples. Co-occurring opal-CT and chalcedonic quartz in shallowly buried chert and porcellanite from Sites 800 and 801 have an 8.7 per mil difference in d18O, suggesting that pore waters in the Pigafetta Basin underwent a Tertiary shift to strongly 18O-depleted values due to alteration of underlying Aptian to Albian-Cenomanian volcaniclastic deposits after opal-CT precipitation, but prior to precipitation of microfossil-filling chalcedony.