217 resultados para Precipitation of metals
Resumo:
Mineralogic, petrographic, and geochemical analyses of sediments recovered from two Leg 166 Ocean Drilling Program cores on the western slope of Great Bahama Bank (308 m and 437 m water depth) are used to characterize early marine diagenesis of these shallow-water, periplatform carbonates. The most pronounced diagenetic products are well-lithified intervals found almost exclusively in glacial lowstand deposits and interpreted to have formed at or near the seafloor (i.e., hardgrounds). Hardground cements are composed of high-Mg calcite (~14 mol% MgCO3), and exhibit textures typically associated with seafloor cementation. Geochemically, hardgrounds are characterized by increased d18O and Mg contents and decreased d13C, Sr, and Na contents relative to their less lithified counterparts. Despite being deposited in shallow waters that are supersaturated with the common carbonate minerals, it is clear that these sediments are also undergoing shallow subsurface diagenesis. Calculation of saturation states shows that pore waters become undersaturated with aragonite within the upper 10 m at both sites. Dissolution, and likely recrystallization, of metastable carbonates is manifested by increases in interstitial water Sr and Sr/Ca profiles with depth. We infer that the reduction in mineral saturation states and subsequent dissolution are being driven by the oxidation of organic matter in this Fe-poor carbonate system. Precipitation of burial diagenetic phases is indicated by the down-core appearance of dolomite and corresponding decrease in interstitial water Mg, and the presence of low-Mg calcite cements observed in scanning electron microscope photomicrographs.
Resumo:
We examine the possibility that glacial increase in the areal extent of reducing sediments might have changed the oceanic Cd inventory, thereby decoupling Cd from PO4. We suggest that the precipitation of Cd-sulfide in suboxic sediments is the single largest sink in the oceanic Cd budget and that the accumulation of authigenic Cd and U is tightly coupled to the organic carbon flux into the seafloor. Sediments from the Subantarctic Ocean and the Cape Basin (South Atlantic), where oxic conditions currently prevail, show high accumulation rates of authigenic Cd and U during glacial intervals associated with increased accumulation of organic carbon. These elemental enrichments attest to more reducing conditions in glacial sediments in response to an increased flux of organic carbon. A third core, overlain by Circumpolar Deep Water (CPDW) as are the other two cores but located south of the Antarctic Polar Front, shows an approximately inverse pattern to the Subantarctic record. The contrasting patterns to the north and south of the Antarctic Polar Front suggest that higher accumulation rates of Cd and U in Subantarctic sediments were driven primarily by increased productivity. This proposal is consistent with the hypothesis of glacial stage northward migration of the Antarctic Polar Front and its associated belt of high siliceous productivity. However, the increase in authigenic Cd and U glacial accumulation rates is higher than expected simply from a northward shift of the polar fronts, suggesting greater partitioning of organic carbon into the sediments during glacial intervals. Lower oxygen content of CPDW and higher organic carbon to biogenic silica rain rate ratio during glacial stages are possible causes. Higher glacial productivity in the Cape Basin record very likely reflects enhanced coastal up-welling in response to increased wind speeds. We suggest that higher productivity might have doubled the areal extent of suboxic sediments during the last glacial maximum. However, our calculations suggest low sensitivity of seawater Cd concentrations to glacial doubling of the extent of reducing sediments. The model suggests that during the last 250 kyr seawater Cd concentrations fluctuated only slightly, between high levels (about 0.66 nmol/kg) on glacial initiations and reaching lowest values (about 0.57 nmol/kg) during glacial maxima. The estimated 5% lower Cd content at the last glacial maximum relative to modern levels (0.60 nmol/kg) cannot explain the discordance between Cd and delta13C, such as observed in the Southern Ocean. This low sensitivity is consistent with foraminiferal data, suggesting minimal change in the glacial Cd mean oceanic content.
Resumo:
The carbonate cements found in Sites 717-719 of ODP Leg 116 correspond to the precipitation of inorganic calcite due to circulation of hot fluid associated with intraplate deformation in the central Indian Ocean. A first burst of hydrothermal activity may have occurred 7.5-9 Ma and a second burst less than 0.5 Ma. These fluids were probably derived from the basaltic basement and the immediately overlying sediments.
Resumo:
Chert, Porcellanite, and other silicified rocks formed in response to high heat flow in the lower 50 meters of 275 meters of sediments at Deep Sea Drilling Project Site 504, Costa Rica Rift. Chert and Porcellanite partly or completely replaced upper Miocene chalk and limestone. Silicified rock occurs as nodules, laminae, stringers, and casts of burrows, and consists of quartz and opal-CT in varying amounts, associated with secondary calcite. The secondary silica was derived from dissolution of opal-A (biogenic silica), mostly diatom frustules and radiolarian tests. Temperature data obtained at the site indicate that transformation of opal-A to opal-CT began at about 50°C, and transformation from opal-CT to quartz at about 55°C. Quartz is most abundant close to basement basalts. These silica transformations occurred over the past 1 m.y., and took place so rapidly that there was incomplete ordering of opal-CT before transformation to quartz; opal-CT formed initially with an uncommonly wide d spacing. Quartz shows poor crystallinity. Chemical data show that the extensively silicified rocks consist of over 96% SiO2; in these rocks, minor and trace elements decreased greatly, except for boron, which increased. Low Al2O3 and TiO2 contents in all studied rocks preclude the presence of significant volcanic or terrigenous detritus. Mn content increases with depth, perhaps reflecting contributions from basalts or hydrothermal solutions. Comparisons with cherts from oceanic plateaus in the central Pacific point to a more purely biogenic host sediment for the Costa Rica Rift cherts, more rapid precipitation of quartz, and formation nearer a spreading center. Despite being closer to continental sources of ash and terrigenous detritus, Costa Rica Rift cherts have lower Al2O3, Fe2O3, and Mn concentrations.
Resumo:
In this study we investigate benthic phosphorus cycling in recent continental margin sediments at three sites off the Namibian coastal upwelling area. Examination of the sediments reveals that organic and biogenic phosphorus are the major P-containing phases preserved. High Corg/Porg ratios just at the sediment surface suggest that the preferential regeneration of phosphorus relative to that of organic carbon has either already occurred on the suspension load or that the organic matter deposited at these sites is already rather refractory. Release of phosphate in the course of benthic microbial organic matter degradation cannot be identified as the dominating process within the observed internal benthic phosphorus cycle. Dissolved phosphate and iron in the pore water are closely coupled, showing high concentrations below the oxygenated surface layer of the sediments and low concentrations at the sediment-water interface. The abundant presence of Fe(III)-bound phosphorus in the sediments document the co-precipitation of both constituents as P-containing iron (oxyhydr)oxides. However, highly dissolved phosphate concentrations in pore waters cannot be explained, neither by simple mass balance calculations nor by the application of an established computer model. Under the assumption of steady state conditions, phosphate release rates are too high as to be balanced with a solid phase reservoir. This discrepancy points to an apparent lack of solid phase phosphorus at sediment depth were suboxic conditions prevail. We assume that the known, active, fast and episodic particle mixing by burrowing macrobenthic organisms could repeatedly provide the microbially catalyzed processes of iron reduction with authigenic iron (oxyhydro)oxides from the oxic surface sediments. Accordingly, a multiple internal cycling of phosphate and iron would result before both elements are buried below the iron reduction zone.
Resumo:
Sediments of the Barbados Ridge complex, cored on DSDP Leg 78A, contain low concentrations of acid-insoluble carbon (0.05-0.25%) and nitrogen (C/N 1.5-5) and dispersed C1-C6 hydrocarbons (100-800 ppb). The concentrations of organic carbon and 13C in organic carbon decrease with depth, whereas the concentration of dispersed hydrocarbons increases slightly with depth. These trends may reflect the slow oxidation of organic matter, with selective removal of 13C and slow conversion of the residual organic matter to hydrocarbons. Very minor indications of nitrogen gas were observed at about 250 meters sub-bottom at two of the drilling sites. Basement basalts have calcite veins with d13C values in the range of 2.0 to 3.2 per mil and d18O-SMOW values ranging from 28.5 to +30.6 per mil. Interstitial waters have d18O-SMOW of 0.2 to -3.5 per mil and dD-SMOW of -2 to -15 per mil. The oxygen isotopic composition of the calcite veins in the basement basalts gives estimated equilibrium fractionation temperatures in the range of 11 to 24°C, assuming precipitation from water with d18O-SMOW in the range of +0.1 to -1.0 per mil. This suggests that basalt alteration and precipitation of vein calcite occurred in contact either with warmer Campanian seawater or, later, with pore water, after burial to depths of 200- 300 meters. Pore waters from all three sites are depleted in deuterium and 18O, and dissolved sulfate is enriched in 34S at Sites 541 and 542, but not at Site 543.
Resumo:
Studying diffusive transport in porous rocks is of fundamental importance in understanding a variety of geochemical processes including: element transfer, primary mineral dissolution kinetics and precipitation of secondary phases. Here we report new findings on the relationship between diffusive transport and textural characteristics of the pore systems on the example of mid-oceanic ridge basalts having different degree of alteration but very similar bulk pore volume. Diffusion processes in porous basalts were studied in situ using H2O -> D2O exchange experiments. The effective diffusion coefficients of water molecules increase systematically from 5.05*10**-11 to 1.19*10**-10 m**2/s for fresh and moderately altered basalts and from 2.40*10**-11 to 6.72*10**-11 m**2/s for completely altered basalt as temperature increases from 5 to 50 °C. The activation energy of the diffusion process increases from 12.29 ± 0.71 kJ/mol for fresh and moderately altered basalts to 14.3 ± 1.33 kJ/mol for completely altered basalt. The results indicate that neither the bulk porosity nor the degree of alteration can be used as proxies for the efficiency of element transport during MORB-water interaction. The formation of secondary phases that replace primary minerals and fill the pore space in the rock leads to the formation of tiny pores and phases with large specific surface area. These factors might have a dominant control on the transport properties of altered basaltic rocks.
Resumo:
At marine seeps, methane is microbially oxidized resulting in the precipitation of carbonates close to the seafloor. Methane oxidation leads to sulfate depletion in sediment pore water, which induces a change in redox conditions. Rare earth element (REE) patterns of authigenic carbonate phases collected from modern seeps of the Gulf of Mexico, the Black Sea, and the Congo Fan were analyzed. Different carbonate minerals including aragonite and calcite with different crystal habits have been selected for analysis. Total REE content (SumREE) of seep carbonates varies widely, from 0.1 ppm to 42.5 ppm, but a common trend is that the SumREE in microcrystalline phases is higher than that of the associated later phases including micospar, sparite and blocky cement, suggesting that SumREE may be a function of diagenesis. The shale-normalized REE patterns of the seep carbonates often show different Ce anomalies even in samples from a specific site, suggesting that the formation conditions of seep carbonates are variable and complex. Overall, our results show that apart from anoxic, oxic conditions are at least temporarily common in seep environments.
Resumo:
The concentrations of rare earth elements (REEs), sulphate, hydrogen sulphide, total alkalinity, calcium, magnesium and phosphate were measured in shallow (<12 cm below seafloor) pore waters from cold-seep sediments on the northern and southern summits of Hydrate Ridge, offshore Oregon. Downward-decreasing sulphate and coevally increasing sulphide concentrations reveal sulphate reductionas dominant early diagenetic process from ~2 cm depth downwards. A strong increase of total dissolved REE concentrations is evident immediately below the sediment-water interface, which can be related to early diagenetic release of REEs into pore water resulting from the remineralization of particulate organic matter. The highest pore water REE concentrations were measured close to the sediment-water interface at ~2 cm depth. Distinct shale normalized REE patterns point to particulate organic matter and iron oxides as main REE sources in the upper ~2-cm depth interval. In general, the pore waters have shalenormalized patterns reflecting heavy REE (HREE) enrichment, which suggests preferential complexation of HREEs with carbonate ions. Below ~2 cm depth, a downward decrease in REE correlates with a decrease in pore water calcium concentrations. At this depth, the anaerobic oxidation of methane (AOM) coupled to sulphate reduction increases carbonate alkalinity through the production of bicarbonate, which results in the precipitation of carbonate minerals. It seems therefore likely that the REEs and calcium are consumed during vast AOM-induced precipitation of carbonate in shallow Hydrate Ridge sediments. The analysis of pore waters from Hydrate Ridge shed new light on early diagenetic processes at cold seeps, corroborating the great potential of REEs to identify geochemical processes and to constrain environmental conditions.
Resumo:
Southern China, especially Yunnan, has undergone high tectonic activity caused by the uplift of Himalayan Mountains during the Neogene, which led to a fast changing palaeogeography. Previous study shows that Southern China has been influenced by the Asian Monsoon since at least the Early Miocene. However, it is yet not well understood how intense the Miocene monsoon system was. In the present study, 63 fossil floras of 16 localities from Southern China are compiled and evaluated for obtaining available information concerning floristic composition, stratigraphic age, sedimentology, etc. Based on such reliable information, selected mega- and micro-floras have been analysed with the coexistence approach to obtain quantitative palaeoclimate data. Visualization of climate results in maps shows a distinct spatial differentiation in Southern China during the Miocene. Higher seasonalities of temperature and precipitation occur in the north and south parts of Southern China, respectively. During the Miocene, most regions of Southern China and Europe were both warm and humid. Central Eurasia was likely to be an arid center, which gradually spread westward and eastward. Our data provide information about Miocene climate patterns in Southern China and about the evolution of these patterns throughout the Miocene, and is also crucial to unravel and understand the climatic signals of global cooling and tectonic uplift.
Resumo:
The conventional model of leaching volcanic rocks as a source of metals in a seafloor hydrothermal systems has been tested by examining the behavior of Pb and other trace elements during hydrothermal alteration. ODP Leg 193 drill sites 1188 (Snowcap) and 1189 (Roman Ruins) on Pual Ridge in the eastern Manus Basin offshore eastern Papua New Guinea provide a unique three-dimensional window into an active back-arc hydrothermal system. We investigate by means of a LA-ICP-MS microbeam technique the capacity of Pb to be leached from a host volcanic rock exposed to various types and intensities of alteration. Our results are in general agreement with previous studies that utilized bulk analytical techniques but provide a more detailed explanation of the processes. Fresh representative dacitic lavas from the Pual Ridge have an average whole rock Pb content of 5.2 ppm, an average interstitial glass Pb content of 5.6 ppm and an average plagioclase Pb content of 1.0 ppm. Altered matrix samples have highly variable Pb values ranging from 0 to 52.4 ppm. High Pb values in altered samples are associated with a low temperature chlorite and clay mineral assemblage, in some cases overprinted by a high temperature (up to 350°C) silica-rich "bleaching" alteration. Only the most highly altered matrix samples have REE patterns that differ from the fresh Pual Ridge dacite. This may represent either different lava histories or alteration characteristics that have affected normally immobile REEs. Altered samples with the highest Pb values have similar REE patterns to those of the local unaltered lavas. They are compositionally similar to typical Pual Ridge dacites indicating a genetic relationship between the main regional volcanic suite and the subseafloor hydrothermally altered, Pb-enriched material. Relative loss/gain for Pb between the analyzed altered samples and a calculated precursor show a maximum relative gain of 901%. Samples with relative Pb gain from both drill sites are associated with lower temperature alteration mineral assemblages characterized by pervasive chloritization. The related lower temperature (220-250°C) neutral to slightly acidic fluids have been ascribed by others to return circulation of hydrothermal fluids that did not interact with seawater. Because altered samples have a higher Pb content than the fresh precursor, leaching of fresh volcanic rocks cannot be the source of Pb in the hydrothermal systems.