90 resultados para Plant population density
Resumo:
Seasonal collections were made from 3 stations in a brackish lagoon near Kiel/Germany from December 1964 to June 1967. In addition 120 samples were taken in June 1966 to investigate the general pattern of distribution. Two species of the offshore fauna were found to dominate the lagoon (high population densities): Cribrononion articulatum and Miliammina fusca. The 'Vegetation zone' of the lagoon contains an assemblage of seven euryhaline arenaceous species. All of them were previously recorded from different regions of the world. - C. articulatum seems to prefer shallow water with a high daily range of water temperature (up to 30° Cels.). Population density and distribution show considerable differences between the different years. Size distribution curves of C. articulatum indicate main reproduction activity in spring and subsequent growth in uniform populations. Growth is terminated after six months but most of the specimens will either die in winter or reproduce the next spring; only a smaller amount is reproducing in summer or autumn. - Annual differences of the observed degree make it difficult to calculate foraminiferal productivity in a lagoonal environment and require seasonal observation over a period of at least 3 or 4 years.
Resumo:
In 1974, the Geological Survey of Japan began its systematic investigation of manganese nodules in the Central Pacific Basin on the new geological research vessel Hakurei Maru. The first cruise (GH 74-5) was carried out over an eastern part area of the Basin (6°-10°30'N, 164°30'-171°30'W), and the authors report here the preliminary results on the occurrence of manganese nodule deposits, paying particular consideration to their relationship to submarine topography and surficial and sub-bottom sedimentary facies. The surveyed area comprises a deep-sea basin at 5,000-5,400 m, defined to the north and east by the chain of seamounts and guyots of the Christmas Ridge. The deep-sea basin is divided roughly into 2 contrasting topographic features. The eastern part is characterised by flattened topography resulting from continuous deposition of turbidities; the meridian and western parts are characterised by gently rolling topography and the existence of a large number of deep-sea hills. Manganese nodules are almost lacking in the former flattened eastern area, whereas they are widely distributed in the latter rolling meridian and western parts. The population density of nodules varies from less than 1 Kg/m² to 26 kg/m² and the higher density is found in the siliceous-calcareous ooze zone of rather small, flat basins surrounded by deep-sea hills. The density is closely related to the thickness of the transparent layer obtained by 3.5 kHz PDR profiling over the whole area. Considering the various data of grab sampling, 3.5 kHz PDR profiling and to a lesser extent of deep-sea television and camera observations, the most promising manganese field in the present area seems to be confined to the north of the western sector of the area.
Resumo:
Recent rapid changes of air temperature on the western side of the Antarctic Peninsula results in increased sediment discharge and ice scouring frequencies in coastal regions. These changes are bound to especially affect slow growing, sessile filter feeders such as the Antarctic bivalve, Laternula elliptica, a long-lived and abundant key species with circumpolar distribution. We investigated the effect of sedimentation and ice scouring on small/young and large/old individuals at two closely located stations, distinctly influenced by both types of disturbance. Small individuals dealt better with disturbance in terms of their respiratory response to sediment exposure, reburrowing ability, and survival after injury, compared to larger animals. At the more disturbed station L. elliptica population density was lower, but larger animals reburrowed faster after iceberg disturbance and reduced their metabolic rate under strong sediment coverage, compared to larger animals of the less disturbed station, indicating that an adaptation or learning response to both types of disturbance may be possible. Smaller individuals were not influenced. Laternula elliptica seems capable of coping with the rapidly changing environmental conditions. Due to a decrease in population density and mean population lifespan, L. elliptica could however lose its key role in the bentho-pelagic carbon flux in areas of high sediment deposition.
Resumo:
Nodule samples obtained were described and studied on board for 1) observation of occurrence and morphology in and outside samplers, size classification, measurement of weight and calculation of population density (kg/m2); 2) photographing whole nodules on the plate marked with the frames of unit areas of both 0cean-70 (0.50 m2) and freefall grab (0.13 m2), and that of typical samples on the plate with a 5 cm grid scale: 3) observation of internal structures of the nodules on cut section; and 4) determination of mineral composition by X-ray diffractometer. The relation between nodule types and geological environment or chemical composition was examined by referring to other data of related studies, such as sedimentology. acoustic survey, and chemical analysis.
Resumo:
Lemmings construct nests of grass and moss under the snow during winter, and counting these nests in spring is 1 method of obtaining an index of winter density and habitat use. We counted winter nests after snow melt on fixed grids on 5 areas scattered across the Canadian Arctic and compared these nest counts to population density estimated by mark-recapture on the same areas in spring and during the previous autumn. Collared lemmings were a common species in most areas, some sites had an abundance of brown lemmings, and only 2 sites had tundra voles. Winter nest counts were correlated with lemming densities estimated in the following spring (r(s) = 0.80, P < 0.001), but less well correlated with densities the previous autumn (r(s) = 0.55, P < 0.001). Winter nest counts can be used to predict spring lemming densities with a log-log regression that explains 64% of the observed variation. Winter nest counts are best treated as an approximate index and should not be used when precise, quantitative lemming density estimates are required. Nest counts also can be used to provide general information about habitat-use in winter, predation rates by weasels, and the extent of winter breeding.
Resumo:
It is expected that the calcification of foraminifera will be negatively affected by the ongoing acidification of the oceans. Compared to the open oceans, these organisms are subjected to much more adverse carbonate system conditions in coastal and estuarine environments such as the southwestern Baltic Sea, where benthic foraminifera are abundant. This study documents the seasonal changes of carbonate chemistry and the ensuing response of the foraminiferal community with bi-monthly resolution in Flensburg Fjord. In comparison to the surface pCO2, which is close to equilibrium with the atmosphere, we observed large seasonal fluctuations of pCO2 in the bottom and sediment pore waters. The sediment pore water pCO2 was constantly high during the entire year ranging from 1244 to 3324 µatm. Nevertheless, in contrast to the bottom water, sediment pore water was slightly supersaturated with respect to calcite as a consequence of higher alkalinity (AT) for most of the year. Foraminiferal assemblages were dominated by two calcareous species, Ammonia aomoriensis and Elphidium incertum, and the agglutinated Ammotium cassis. The one-year cycle was characterised by seasonal community shifts. Our results revealed that there is no dynamic response of foraminiferal population density and diversity to elevated sediment pore water pCO2. Surprisingly, the fluctuations of sediment pore water undersaturation (Omega calc) co-vary with the population densities of living Ammonia aomoriensis. Further, we observed that most of the tests of living calcifying foraminifera were intact. Only Ammonia aomorienis showed dissolution and recalcification structures on the tests, especially at undersaturated conditions. Therefore, the benthic community is subjected to high pCO2 and tolerates elevated levels as long as sediment pore water remains supersaturated. Model calculations inferred that increasing atmospheric CO2 concentrations will finally lead to a perennial undersaturation in sediment pore waters. Whereas benthic foraminifera indeed may cope with a high sediment pore water pCO2, the steady undersaturation of sediment pore waters would likely cause a significant higher mortality of the dominating Ammonia aomoriensis. This shift may eventually lead to changes in the benthic foraminiferal communities in Flensburg Fjord, as well as in other regions experiencing naturally undersaturated Omega calc levels.