132 resultados para Permian-Triassic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fibrous calcite veins with organic inclusions have been widely considered as indicators of oil and gas generation and migration under overpressure. Abundant fibrous calcite veins containing organic-bearing inclusions occur in faulted Lower Paleozoic through Triassic hydrocarbon source rocks in the Dabashan Foreland Belt (DBF). d13CPDB and d18OPDB values of the fibrous calcite range from - 4.8 to -1.9 to per mil and - 12.8 to - 8.4 per mil respectively, which is lighter than that of associated carbonate host rocks ranging from - 1.7 to + 3.1 per mil and - 8.7 to - 4.5 per mil. A linear relationship between d13CPDB and d18OPDB indicates that the calcite veins were precipitated from a mixture of basinal and surface fluids. The fibrous calcite contains a variety of inclusions, such as solid bitumen, methane bearing all-liquid inclusions, and vapor-liquid aqueous inclusions. Homogenization temperatures of aqueous inclusions range from 140 to 196° with an average of 179°. Salinities of aqueous inclusions average 9.7 wt% NaCl. Independent temperatures from bitumen reflectance and inclusion phase relationships of aqueous and methane inclusions were used to determine fluid pressures. Results indicate high pressures, elevated above typical lithostatic confining pressure, from 150 to 200 MPa. The elevated salinity and high temperature and pressure conditions of the fibrous calcite veins argue against an origin solely from burial overpressure resulting from clay transformation and dehydration reactions. Instead fluid inclusion P-T data and geochemistry results and regional geology indicate abnormally high pressures during fluid migration. These findings indicate that tectonic stress generated fracture and fault fluid pathways and caused migration of organic bearing fluids from the DBF during the Yanshan orogeny.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twenty-three core catcher samples from Site 1166 (Hole 1166A) in Prydz Bay were analyzed for their palynomorph content, with the aims of determining the ages of the sequence penetrated, providing information on the vegetation of the Antarctic continent at this time, and determining the environments under which deposition occurred. Dinocysts, pollen and spores, and foraminiferal test linings were recovered from most samples in the interval from 142.5 to 362.03 meters below seafloor (mbsf). The interval from 142.5 to 258.72 mbsf yielded palynomorphs indicative of a middle-late Eocene age, equivalent to the lower-middle Nothofagidites asperus Zone of the Gippsland Basin of southeastern Australia. The Prydz Bay sequence represents the first well-dated section of this age from East Antarctica. Dinocysts belonging to the widespread "Transantarctic Flora" give a more confident late Eocene age for the interval 142.5-220.5 mbsf. The uppermost two cores within this interval, namely, those from 142.5 and 148.36 mbsf, show significantly higher frequencies of dinocysts than the cores below and suggest that an open marine environment prevailed at the time of deposition. The spore and pollen component may reflect a vegetation akin to the modern rainforest scrubs of Tasmania and New Zealand. Below 267 mbsf, sparse microfloras, mainly of spores and pollen, are equated with the Phyllocladidites mawsonii Zone of southeastern Australia, which is of Turonian to possibly Santonian age. Fluvial to marginal marine environments of deposition are suggested. The parent vegetation from this interval is here described as "Austral Conifer Woodland." The same Late Cretaceous microflora occurs in two of the cores above the postulated unconformity at 267 mbsf. In the core at 249.42 mbsf, the Late Cretaceous spores and pollen are uncontaminated by any Tertiary forms, suggesting that a clast of this older material has been sampled; such a clast may reflect transport by ice during the Eocene. At 258.72 mbsf, Late Cretaceous spores and pollen appear to have been recycled into the Eocene sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The NWW-striking Qinling Orogen formed in the Triassic by collision between the North China and Yangtze Cratons. Triassic granitoid intrusions, mostly middle- to high-K, calc-alkaline in composition, are widespread in this orogen, but contemporaneous intrusions are rare in the southern margin of the North China Craton, an area commonly considered as the hinterland belt of the orogen. In this paper, we report zircon U-Pb ages, elemental geochemistry, and Sr-Nd-Hf isotope data for the Laoniushan granitoid complex that was emplaced in the southern margin of the North China Craton. Zircon U-Pb dating shows that the complex was emplaced in the late Triassic (228±1 to 215±4 Ma), indicating that it is part of the post-collisional magmatism in the Qinling Orogen. The complex consists of, from early to late, biotite monzogranite, quartz diorite, quartz monzonite, and hornblende monzonite, which have a wide compositional range, e.g., SiO2=55.9-70.6 wt%, K2O+Na2O=6.6-10.2 wt%, and Mg# of 24 to 54. Rocks of the biotite monzogranite have high Al2O3(15.5-17.4 wt%), Sr(396-1398 ppm) and Ba(1284-3993 ppm) contents and La/Yb(mostly 14-30) and Sr/Y(mostly 40-97) ratios, but low Yb(mostly 1.3-1.6 ppm) and Y(mostly14-19 ppm) contents, features typical of adakite. The quartz monzonite, hornblende monzonite and quartz diorite have a shoshonitic affinity, with K2O up to 5.58 wt% and K2O/Na2O ratios averaging 1.4. The rocks are characterized by strong LREE/HREE fractionation in chondrite-normalized REE pattern, without obvious Eu anomalies, and show enrichment in large ion lithophile elements but depletion in high field strength elements (Nb, Ta, Ti). The biotite monzogranite (228 Ma) has initial 87Sr/86Sr ratios of 0.7061 to 0.7067, eNd(t) values of -9.2 to -12.6, and ?Hf(t) values of -9.0 to -15.1; whereas the shoshonitic granitoids (mainly 217-215 Ma) have similar initial 87Sr/86Sr ratios (0.7065 to 0.7075) but more radiogenic eNd(t) (-12.4 to -17.0) and eHf(t) (-14.1 to -17.0). The Sr-Nd-Hf isotope data indicate that the rocks were likely generated by partial melting of an ancient lower continental crust with heterogeneous compositions, as partly confirmed by the widespread presence of the early Paleoproterozoic inherited zircons. Mafic microgranular enclaves (MMEs), characterized by fine-grained igneous textures and an abundance of acicular apatites, are common in the Laoniushan complex. Compared with the host rocks, they have lower SiO2 (48.6-53.7 wt.%) and higher Mg# (51-56), Cr (122-393 ppm), and Ni (24-79 ppm), but equivalent Sr-Nd isotope compositions, indicating that the MMEs likely originated from an ancient enriched lithospheric mantle. The abundance of MMEs in the granitoid intrusions suggests that magma mixing plays an important role in the generation of the Laoniushan complex. Collectively, it is suggested that the Laoniushan complex was a product of post-collisional magmatism related to lithospheric extension following slab break-off. Formation of the adakitic and shoshonitic intrusions in the Laoniushan complex indicates that the Qinling Orogen had evolved into a post-collisional setting by about 230-210 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twenty-five samples from selected cored intervals of problematic Triassic-Jurassic age from Sites 545, 546, and Hole 547B have been analyzed palynologically to aid age determination. Section 545-73-1 yielded a marine palynoflora of Sinemurian-Bajocian age. A palynoflora of nonmarine origin and assigned a Rhaetian-Hettangian age was recovered from halite in Section 546-18-2. Marine palynofloras of Hettangian-early Pliensbachian age were recovered from Sample 547B-24-CC to Section 547B-14-2. Sections 547B-28-1 to 547B-25-3 yielded impoverished nonmarine palynofloras to which only a general Rhaetian-Hettangian age could be given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In western Neuschwabenland basic dikes occur in the Jurassic lavas and Permian sediments of Vestfjella as weil as in the Precambrian sedimentary-volcanogenic rock sequence of the Ahlmannryggen and in the Precambrian crystalline complexes of Heimefrontfjella and Mannefallknausane. The concentration of the dikes in Vestfjella is conspicuous. Two main directions of strike perpendicular to each other are recognizable, from which the NE-SW striking one is predominant. The direction of the dikes coincides with the Mesozoic and younger fracture tectonics. Age relationships by structural, petrographical and geochemical observations are confirmed by palaeomagnetic and radiometrie age determinations from PETERS et al. (1986). Considerations on the geochemistry of further dolerite occurrences from Antarctica and other regions of the Gondwana continent are pointed out. Finally comparisons with the analogous South African dike system show the geotectonic significance of the dolerite dikes for the break-up of Gondwana.