731 resultados para Pachycondyla striata
Resumo:
Late Oligocene to late Pliocene vertical water-mass stratification along depth traverses in the northern Indian Ocean is depicted in this paper by benthic foraminifer index faunas. During most of this time, benthic faunas indicate well-oxygenated, bottom-water conditions at all depths except under the southern Indian upwelling and in the Pliocene in the southern Arabian Sea. Faunas suggest the initiation of lower oxygen conditions at intermediate depths in the northern Indian Ocean beginning in Oligocene Zone P21a. Lower oxygen conditions intensified during primary productivity pulses, possibly related to increased upwelling vigor, in the latest Oligocene and throughout most of the late middle through late Miocene. During times of elevated primary production, there may be more oxygen flux into sedimentary pore waters and the shallow infaunal habitat may become more oxygenated. One criterion for locating the source of "new" water masses is vertical homogeneity of benthic foraminifer indexes for well-oxygenated water masses from intermediate through abyssal depths. In the northern Mascarene Basin, this type of faunal homogeneity with depth corroborates the proposal that the northern Indian Ocean was an area of sinking well-oxygenated waters through most of the Miocene before Zone N17. Oxygenated, possibly "new" intermediate-water masses in the low- to middle-latitude Mascarene and Central Indian basins first developed in the late Oligocene. These well-oxygenated waters were probably more fertile than the Antarctic Intermediate Waters (AAIW) that cover intermediate depths in these areas today. Production of intermediate waters more similar to modern AAIW is indicated by the sparse benthic population of epifaunal rotaloid species in the northern Mascarene Basin during middle Miocene Zone N9 and from early through late Pliocene time. Deep-water characteristics are more difficult to interpret because of the extensive redeposition at the deeper sites. Redeposited intermediate, rather than shallow, water fossils and erosion from north to south in the Mascarene Basin are incompatible with the sluggish circulation from south to north through the western Indian Ocean basins today. Such erosion could result from the vigorous sinking of an intermediate-depth water mass of northern origin. Before late Oligocene Zone P22, benthic faunas indicate a twofold subdivision of the troposphere, with the boundary between upper and lower well-oxygenated water masses located from 2500-3000 mbsl. No characteristic bottom-water fauna developed before the end of late Oligocene Zone P22. Deep and abyssal benthic indexes suggest the development of water masses similar to those of the present day in the latest Miocene. Faunas containing deep-water benthic indexes, including the uvigerinids, suggestive of a water mass similar to modern Indian Deep Water (IDW), appeared during the late Miocene in the northern Mascarene and Central Indian basins. In the early Pliocene, this deep-water fauna was found only in the Central Indian Basin, whereas a fauna typical of modern Antarctic Bottom Water (AABW) spread through deep waters at 2800 mbsl in the Mascarene Basin. By late Pliocene Zone N21, however, deep-water faunas similar to their modern analogs were developed in both the eastern and western basins. Abyssal faunas, studied only in the Mascarene Basin, show more or less similarity to those under modern AABW. Bottom-water faunas containing Nuttallides umbonifera or Epistominella exiguua were first differentiated at the end of Zone P22, then appeared episodically during the early Miocene. These AABW-type faunas reappeared and migrated updepth into deep waters during the glacial episodes at the end of the Miocene and at the beginning of the Pliocene. By late Pliocene Zone N21, however, a bottom-water fauna similar to that under eastern Indian Bottom Water (IBW) developed in the Mascarene Basin. Modern bottom-water characteristics of the Mascarene Basin must have developed after ZoneN21.
Resumo:
High-resolution benthic foraminiferal and geochemical investigations were carried out across sapropels S5 and S6 from two sediment cores in the Levantine Sea to evaluate the impact of climatic and environmental changes on benthic ecosystems during times of sapropel formation. The faunal successions indicate that eutrophication and/or oxygen reduction started several thousand years prior to the onset of sapropel formation, suggesting an early response of the bathyal ecosystems to climatic changes. Severest oxygen depletions appear in the early phases of sapropel formation. The initial reduction of deep-water ventilation is caused by a warming and fresh water-induced stratification of Eastern Mediterranean surface waters. During the late phase of S5 formation improved oxygenation is restricted to middle bathyal ecosystems, indicating that at least some formation of subsurface water took place. During S6 formation oxygen depletions and eutrophication were less severe and more variable than during S5 formation. Estimated oxygen contents were low dysoxic at middle bathyal to anoxic at lower bathyal depths during the early phase of S6 formation but never dropped to anoxic values in its late phase. The high benthic ecosystem variability during S6 formation suggests that water column stratification at deep-water formation sites was in a very unstable mode and susceptible to minor temperature fluctuations at a millennial time-scale.
Resumo:
Benthic foraminifers were studied quantitatively in 120 lower Miocene through upper Pleistocene samples from Ocean Drilling Program Site 747 (Central Kerguelen Plateau) and Sites 748 and 751 (Southern Kerguelen Plateau). These sites are situated on an 450-km-long, north-south transect between 54°49'S and 58°26'S at present water depths between 1696 and 1288 m. Principal component analysis on the census data of the most abundant 92 taxa helped to identify 8 benthic foraminifer assemblages. These benthic foraminifer assemblages were compared with Holocene faunas from southern high latitudes to reconstruct paleoenvironmental conditions. Middle lower Miocene sediments are characterized by a Uvigerina hispidocostata assemblage, indicating high paleoproductivity and/or not well-ventilated bottom water. From late early to late middle Miocene time, the Southern Kerguelen Plateau was bathed by a young, well-oxygenated, and carbonate-aggressive water mass, as indicated by a Nuttallides umbonifer-dominated benthic foraminifer assemblage. During late middle Miocene time, an Astrononion pusillum assemblage took over for only about 1 m.y., probably indicating the first injection of an aged water mass, similar to the North Atlantic Deep Water (NADW), into a developing circumpolar current system. Around the middle to late Miocene boundary, the fauna again became dominated by N. umbonifer. After the last appearance of N. umbonifer, reestablishment of the A. pusillum assemblage from the early late through at least the late late Miocene, indicated the established influence of a NADW-like water mass. The latest Miocene through middle late Pliocene benthic foraminifer assemblage was characterized by Epistominella exigua and strong carbonate dissolution, indicating very high biosiliceous production, and this in turn may indicate the formation and paleoposition of an Antarctic Polar Frontal Zone. From the late late Pliocene, a Trifarina angulosa assemblage (indicative today of sandy substrate and vigorous bottom currents) strongly dominated the fauna up to the late Pleistocene, when Bulimina aculeata (indicative today of calm sedimentation with high organic matter fluxes) became an important and partly dominating constituent of the fauna. This is interpreted as the faunal response to the decreased winnowing force (bottom current velocities) of the Antarctic Circumpolar Current during periods of global climatic amelioration and raised sea level.
Resumo:
This paper discusses the Paleobathymetric and paleoenvironmental history of the New Hebrides Island Arc and North d'Entrecasteaux Ridge during Cenozoic time based on benthic foraminiferal and sedimentological data. Oligocene and Pliocene to Pleistocene benthic foraminiferal assemblages from Sites 827, 828, 829, and 832 of Ocean Drilling Program (ODP) Leg 134 (Vanuatu) are examined by means of Q-mode factor analysis. The results of this analysis recognize the following bathymetrically significant benthic foraminiferal biofacies: (1) Globocassidulina subglobosa biofacies and Bulimina aculeata-Bolivinita quadrilatera biofacies representing the upper bathyal zone (600-1500 m); (2) Gavelinopsis praegeri-Cibicides wuellerstorfi biofacies, indicating the Pacific Intermediate Water (water depth between 1500 and 2400 m); (3) Tosaia hanzawai-Globocassidulina muloccensis biofacies, Valvulineria gunjii biofacies, and the Melonis barleeanus-Melonis sphaeroides biofacies, which characterize the lower bathyal zone; (4) the Nuttallides umbonifera biofacies, which characterizes the interval between the lysocline (approximately 3500 m) and the carbonate compensation depth (approximately 4500 m); and (5) the Rhabdammina abyssorum biofacies representing the abyssal zone below the carbonate compensation depth. Benthic foraminiferal patterns are used to construct Paleobathymetric and paleogeographic profiles of the New Hebrides Island Arc and North d'Entrecasteaux Ridge for the following age boundaries: late Miocene/Pliocene, early/late Pliocene, Pliocene/Pleistocene, and Pleistocene/Holocene.
Resumo:
Species composition and abundance of phytoplankton and chlorophyll concentration were measured at three horizons of 9 stations in the Nha Trang Bay of the South China Sea in March 1998. Vertical distribution of fluorescence parameters, temperature and irradiance were measured in the 0-18 m layer of the water column at 21 stations. It was shown that according to biomass (B) and chlorophyll concentration (Chl) the Bay is mezotrophic. B and Chl in the water column increased seaward. Mean values of Chl in the southern part of the Bay exceeded those in northern part. Mean values of B were similar. B and Chl in the bottom layer exceeded ones in the upper layer. Diatoms dominated in species diversity and abundance. Diatom Guinardia striata made the main contribution to phytoplankton biomass. Similarity of phytoplankton was high. In the upper layer phytoplankton was photoinhibited during the most part of the light period, but at the bottom photosynthetic activity was high. Water column B varied in an order of magnitude during the daily cycle mainly because of B variations in the bottom layer due to tide flow.
Resumo:
Pluri-annual proxy records of marine sediment cores from the Tagus Prodelta off Lisbon, Portugal, have been generated to gain insight into the climatic and hydrographic changes in the area during the twentieth century. The study includes benthic and planktonic foraminiferal faunas and the stable isotopic composition of one benthic (Uvigerina celtica) and two planktonic (Globigerina bulloides and Globorotalia inflata) foraminiferal species. Sea bottom and surface water temperatures were estimated based on the d18O values of these species and compared with instrumental data. The foraminiferal fauna and the isotope-based temperature record indicate increasing temperatures throughout the last century. The immigration of a new species, Saidovina karreriana, to the area around 100 years ago indicates changes in the trophic conditions and water mass properties, which are probably at least partly due to anthropogenic pollution.
Resumo:
Quantitative study of benthic foraminifers from the upper Miocene to lower Pliocene section at Site 612 (1404 m present water depth) and the Pliocene section at Site 613 (2323 m present water depth) shows no evidence of widespread downslope transport of shallow-water biofacies or reworking of older material in the greater than 150 µm size fraction. In contrast, upper Miocene sediments from Site 604 (2364 m present water depth) show extensive reworking and downslope transport. At Site 612, benthic foraminifers show a succession from an upper Miocene Bolivina alata-Nonionella sp. biofacies, to an uppermost Miocene Bulimina alazanensis biofacies, to a lower Pliocene Cassidulina reflexa biofacies, to an upper Pliocene Melonis barleeanum-Islandiella laevigata biofacies. Evidence suggests that the Pliocene biofacies are in situ, although they could have been transported downslope from the upper-middle bathyal zone. At Site 613, Uvigerina peregrina dominated the "middle" Pliocene, while Globocassidulina subglobosa was dominant in the early and late Pliocene. High abundances of U. peregrina at Site 613 are associated with high values of sedimentary organic carbon.
Resumo:
The benthic foraminiferal populations along three traverses across the Northwest African continental margin were analyzed on the base of ca. 60 surface sediment samples. Depth ranges of 213 species were established and the main trends of vertical distribution are compared with those known from adjacent regions. Main faunal breaks occure at 100/200 m and 1000/1500 m depth of water. Some species show latitudinal distribution boundaries and the same applies to population density (standing stock), reflecting the regional distribution of nutrients supply by river discharge and upwelling processes. - High proportions of Bolivina test at the lower slope indicate extended downslope transport.
Resumo:
Benthic foraminifers were studied from lower Paleocene through upper Oligocene sections from Sites 747 and 748. The composition of the benthic foraminifer species suggests a middle to lower bathyal (600-2000 m) paleodepth during the Neogene and a probable upper abyssal (2000-3000 m) paleodepth during the Paleocene at Site 747. Site 748 is thought to have remained at middle to lower bathyal paleodepths throughout the Cenozoic. Principal component analysis distinguished four major benthic foraminifer assemblages: (1) a Paleocene Stensioina beccariiformis assemblage at Sites 747 and 748, (2) an early Eocene Nuttallides truempyi assemblage at lower bathyal Site 747, (3) an early through middle Eocene Stilostomella-Lenticulina assemblage at middle bathyal Site 748, and (4) a latest Eocene through Oligocene Cibicidoides-Astrononion pusillum assemblage at both sites. Major benthic foraminifer changes, as indicated by the principal components and first and last appearances, occurred at or close to the Paleocene/Eocene boundary, and in the late Eocene close to the middle/late Eocene boundary.
Resumo:
Late Cenozoic benthic foraminiferal faunas from the Caribbean Deep Sea Drilling Project (DSDP) Site 502 (3052 m) and East Pacific DSDP Site 503 (3572 m) were analyzed to interpret bottom-water masses and paleoceanographic changes occurring as the Isthmus of Panama emerged. Major changes during the past 7 Myr occur at 6.7-6.2, 3.4, 2.0, and 1.1 Ma in the Caribbean and 6.7-6.4, 4.0-3.2, 2.1, 1.4, and 0.7 Ma in the Pacific. Prior to 6.7 Ma, benthic foraminiferal faunas at both sites indicate the presence of Antarctic Bottom Water (AABW). After 6.7 Ma benthic foraminiferal faunas indicate a shift to warmer water masses: North Atlantic Deep Water (NADW) in the Caribbean and Pacific Deep Water (PDW) in the Pacific. Flow of NADW may have continued across the rising sill between the Caribbean and Pacific until 5.6 Ma when the Pacific benthic foraminiferal faunas suggest a decrease in bottom-water temperatures. After 5.6 Ma deep-water to intermediate-water flow across the sill appears to have stopped as the bottom-water masses on either side of the sill diverge. The second change recorded by benthic foraminiferal faunas occurs at 3.4 Ma in the Caribbean and 4.0-3.2 Ma in the Pacific. At this time the Caribbean is flooded with cold AABW, which is either gradually warmed or is replaced by Glacial Bottom Water (GBW) at 2.0 Ma and by NADW at 1.1 Ma. These changes are related to global climatic events and to the depth of the sill between the Caribbean and Atlantic rather than the rising Isthmus of Panama. Benthic foraminiferal faunas at East Pacific Site 503 indicate a gradual change from cold PDW to warmer PDW between 4.0 and 3.2 Ma. The PDW is replaced by the warmer, poorly oxygenated PIW at 2.1 Ma. Although the PDW affects the faunas during colder intervals between 1.4 and 0.7 Ma, the PIW remains the principal bottom-water mass in the Guatemala Basin of the East Pacific.