293 resultados para PB-186


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correlation of new multichannel seismic profiles across the upper Indus Fan and Murray Ridge with a dated industrial well on the Pakistan shelf demonstrates that ~40% of the Indus Fan predates the middle Miocene, and ~35% predates uplift of the Murray Ridge (early Miocene, ~22 Ma). The Arabian Sea, in addition to the Makran accretionary complex, was therefore an important repository of sediment from the Indus River system during the Paleogene. Channel and levee complexes are most pronounced after the early Miocene, coincident with an increase in sedimentation rates. Middle Eocene sandstones from Deep Sea Drilling Project Site 224 on the Owen Ridge yield K-feldspars whose Pb isotopic composition, measured by in situ ion microprobe methods, indicates an origin in, or north of, the Indus suture zone. This observation requires that India-Asia collision had occurred by this time and that an Indus River system, feeding material from the suture zone into the basin, was active soon after collision. Pleistocene provenance was similar to that during the Eocene, albeit with greater contribution from the Karakoram. A mass balance of the erosional record on land with deposition in the fan and associated basins suggests that only ~40% of the Neogene sediment in the fan is derived from the Indian plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oceanic zircon trace element and Hf-isotope geochemistry offers a means to assess the magmatic evolution of a dying spreading ridge and provides an independent evaluation of the reliability of oceanic zircon as an indicator of mantle melting conditions. The Macquarie Island ophiolite in the Southern Ocean provides a unique testing ground for this approach due to its formation within a mid-ocean ridge that gradually changed into a transform plate boundary. Detrital zircon recovered from the island records this change through a progressive enrichment in incompatible trace elements. Oligocene age (33-27 Ma) paleo-detrital zircon in ophiolitic sandstones and breccias interbedded with pillow basalt have trace element compositions akin to a MORB crustal source, whereas Late Miocene age (8.5 Ma) modern-detrital zircon collected from gabbroic colluvium on the island have highly enriched compositions unlike typical oceanic zircon. This compositional disparity between age populations is not complimented by analytically equivalent eHf data that primarily ranges from 14 to 13 for sandstone and modern-detrital populations. A wider compositional range for the sandstone population reflects a multiple pluton source provenance and is augmented by a single cobble clast with eHf equivalent to the maximum observed composition in the sandstone (~17). Similar sandstone and colluvium Hf-isotope signatures indicate inheritance from a similar mantle reservoir that was enriched from the depleted MORB mantle average. The continuity in Hf-isotope signature relative to trace element enrichment in Macquarie Island zircon populations, suggests the latter formed by reduced partial melting linked to spreading-segment shortening and transform lengthening along the dying spreading ridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New Pb, Sr, and Nd isotope data are presented for 64 samples from the six backarc sites drilled during Leg 135. Systematic changes in Pb and Sr compositions illustrate significant isotopic variations between and within sites as well as provide two key pieces of information. First, a recent influx of asthenosphere with Indian Ocean mantle affinities has occurred and has successfully displaced older "Pacific" asthenosphere from the mantle underlying the backarc region. Second, clear evidence exists for mixing between these two asthenospheric end-members and at least one "arc-like" component. The latter was not the same as most material currently erupting in the Tofua Arc, but it must have had a more radiogenic Pb-isotope signature, perhaps similar to rocks analyzed from the islands of Tafahi, and Niuatoputapu. A comparison between the isotopic variations and the tectonic setting of the drill sites reveals consistent and important information regarding the mantle dynamics beneath the evolving backarc basin. We propose a model in which the source of upwelling magmas changes from Pacific to Indian Ocean asthenosphere with the propagation of seafloor spreading, a model with important implications for the rate of mantle influx into this region. Although the chemistries of backarc magmas have been profoundly influenced by this process, an additional consequence is the advection of Indian Ocean asthenosphere into the sub-arc mantle source. The isotopic compositions of arc rocks from the vicinity have been reevaluated on the basis of the proposed mantle advection model. We suggest that the slab-derived flux of trace elements into the arc wedge has remained relatively uniform with time (i.e., ~40 Ma), so that the change in arc chemistry results from mantle source substitution, rather than from differences in the composition of the downgoing plate.