111 resultados para Middle palaeolithic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

At Sites 689 and 690, drilled during ODP (Ocean Drilling Program) Leg 113 on the Maud Rise (southeast Weddell Sea), moderately to well preserved radiolarian assemblages were obtained from continuously recovered upper Oligocene and Neogene sequences. Based on radiolarian investigations, a biostratigraphic zonation for a time interval covering the late Oligocene to the middle Miocene is proposed. The radiolarian zonation comprises 10 zones. Five zones are new, and five zones previously defined by Chen (1975) were modified. The zones and the ranges of the nominate species are directly calibrated with a geomagnetic polarity record. This is the first attempt at a direct correlation of late Oligocene to middle Miocene radiolarian zones with the geomagnetic time scale. Six hiatuses were delineated in the studied upper Oligocene to middle Miocene sections. One major hiatus, spanning ca. 6 m.y., is between the upper Oligocene and the lower Miocene sequences. Another important hiatus separates the lower and middle Miocene sediments. As a base for the biostratigraphic investigations, a detailed taxonomic study of the recovered radiolarian taxa is achieved. Three new radiolarian species that occur in upper Oligocene and lower Miocene sediments are described (Cycladophora antiqua, Cyrtocapsella robusta, and Velicucullus altus).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long-term warmth of the Eocene (~56 to 34 million years ago) is commonly associated with elevated partial pressure of atmospheric carbon dioxide (pCO2). However, a direct relationship between the two has not been established for short-term climate perturbations. We reconstructed changes in both pCO2 and temperature over an episode of transient global warming called the Middle Eocene Climatic Optimum (MECO; ~40 million years ago). Organic molecular paleothermometry indicates a warming of southwest Pacific sea surface temperatures (SSTs) by 3° to 6°C. Reconstructions of pCO2 indicate a concomitant increase by a factor of 2 to 3. The marked consistency between SST and pCO2 trends during the MECO suggests that elevated pCO2 played a major role in global warming during the MECO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During most of the vegetation season from late May to early September large-sized diatom alga Proboscia alata forms local patches with high abundances and biomasses in different oceanographic domains of the eastern Bering Sea shelf. For 0-25 m layer average abundance and biomass of species in these patches are 700000 cells/l and 5 g/m**3 (wet weight), while corresponding estimates for the layer of maximal species concentrations are 40000000 cells/l and 38 g/m**3 (wet weight) or 1.6 g C/m**3. These levels of abundance and biomass are typical for the spring diatom bloom in the region. Outbursts of P. alata mass development are important for the carbon cycle in the pelagic zone of the shelf area in the summer season. The paradox of P. alata summertime blooms over the middle shelf lies in their occurrences against the background of the sharp seasonal pycnocline and deficiency in nutrients in the upper mixed layer. Duration of the outbursts in P. alata development is about two weeks and size of patches with high abundances can be as large as 200 km across. Degradation of the P. alata summertime outbursts may occur during 4-5 days. Rapid sinking of cells through the seasonal pycnocline results in intense transport of organic matter to bottom sediments. One of possible factors responsible for rapid degradation of the blooms is affect on the population by ectoparasitic flagellates. At terminal stages of the P. alata blooms percentage of infected cells can reach 70-99%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three ODP sites located on the Marion Plateau, Northeast Australian margin, were investigated for clay mineral and bulk mineralogy changes through the early to middle Miocene. Kaolinite to smectite (K/S) ratios, as well as mass accumulation rates of clays, point to a marked decrease in accumulation of smectite associated with an increase in accumulation of kaolinite starting at ~15.6 Ma, followed by a second increase in accumulation of kaolinite at ~13.2 Ma. Both of these increases are correlative to an increase in the calcite to detritus ratio. Comparison of our record with published precipitation proxies from continental Queensland indicates that increases in kaolinite did not correspond to more intense tropical-humid conditions, but instead to periods of greater aridity. Three mechanisms are explored to explain the temporal trends in clay on the Marion Plateau: sea-level changes, changes in oceanic currents, and denudation of the Australian continent followed by reworking and eolian transport of clays. Though low mass accumulation rates of kaolinite are compatible with a possible contribution of eolian material after 14 Ma, when Australia became more arid, the lateral distribution of kaolinite along slope indicates mainly fluvial input for all clays and thus rules out this mechanism as well as oceanic current transport as the main controls behind clay accumulation on the plateau. We propose a model explaining the good correlation between long-term sea-level fall, decrease in smectite accumulation, increase in kaolinite accumulation and increase in carbonate input to the distal slope locations. We hypothesize that during low sea level and thus periods of drier continental climate in Queensland, early Miocene kaolinite-rich lacustrine deposits were being reworked, and that the progradation of the heterozoan carbonate platforms towards the basin center favored input of carbonate to the distal slope sites. The major find of our study is that increase kaolinite fluxes on the Queensland margin during the early and middle Miocene did not reflect the establishment of a tropical climate, and this stresses that care must be taken when reconstructing Australian climate based on deep-sea clay records alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 87Sr/86Sr isotope curve of the middle Eocene to Oligocene was produced from analysis of foraminifera in Ocean Drilling Program Hole 689B, Maud Rise, near the coast of Antarctica. Sediments from the hole are well preserved with no evidence of diagenetic alteration. The sequence is nearly complete from 46.3 to 24.8 Ma, with an average sampling interval of 166 kyr. Excellent magnetostratigraphy in Hole 689B allows calibration to the geomagnetic polarity time scale of Cande and Kent (1992). Marine strontium isotopic ratios were nearly stable from 46.3 to 35.5 Ma, averaging near 0.70773, after which they began to increase. A slow increase began after 40.4 Ma, rising at a rate of only about 8*10**-6/m.y. from base values of 0.707707. From 35.5 Ma to 24.8 Ma the average slope increased to 40*10**-6/m.y. The slope remained constant at least until 24.8 Ma, when the record becomes discontinuous owing to unconformities. We evaluate several possible controls on the marine strontium isotope curve that could have led to the observed growth in 87Sr/86Sr ratios near the Eocene/Oligocene boundary. Three mechanisms are considered, including the onset of Antarctic glaciation, increased mountain building in the Himalayan-Tibetan region, and decreased hydrothermal activity. None of the mechanisms alone seems to adequately explain the increased 87Sr/86Sr ratios during the Oligocene. Glaciation as a weathering agent was too episodic and probably began too late to explain the upturn in marine 87Sr/86Sr ratios. There is evidence that uplift in the Himalayan-Tibetan region began in the Miocene, much too late to control Oligocene strontium isotope ratios. Lastly, hydrothermal flux changes since the Eocene were apparently not great enough alone to account for the rise in marine 87Sr/86Sr ratios. We suggest that a combination of causes, such as decreased hydrothermal activity perhaps followed by increased glaciation and mountain building, might best explain the growth of the marine 87Sr/86Sr curve during the Oligocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heinrich events are well documented for the last glaciation, but little is known about their occurrence in older glacial periods of the Pleistocene. Here we report scanning XRF and bulk carbonate d18O results from Integrated Ocean Drilling Program Site U1308 (reoccupation of Deep Sea Drilling Project Site 609) that are used to develop proxy records of ice-rafted detritus (IRD) for the last ~1.4 Ma. Ca/Sr is used as an indicator of IRD layers that are rich in detrital carbonate (i.e., Heinrich layers), whereas Si/Sr reflects layers that are poor in biogenic carbonate and relatively rich in detrital silicate minerals. A pronounced change occurred in the composition and frequency of IRD at ~640 ka during marine isotope stage (MIS) 16, coinciding with the end of the middle Pleistocene transition. At this time, "Hudson Strait" Heinrich layers suddenly appeared in the sedimentary record of Site U1308, and the dominant period of the Si/Sr proxy shifted from 41 ka prior to 640 ka to 100 ka afterward. The onset of Heinrich layers during MIS 16 represents either the initiation of surging of the Laurentide Ice Sheet (LIS) off Hudson Strait or the first time icebergs produced by this process survived the transport to Site U1308. We speculate that ice volume (i.e., thickness) and duration surpassed a critical threshold during MIS 16 and activated the dynamical processes responsible for LIS instability in the region of Hudson Strait. We also observe a strong coupling between IRD proxies and benthic d13C variation at Site U1308 throughout the Pleistocene, supporting a link between iceberg discharge and weakening of thermohaline circulation in the North Atlantic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to find out if there is a significant difference in using NDVI dataset processed by harmonic analysis method to evaluate its dynamic and response to climate change, compared with the original data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of orbital precession on early Paleogene climate and ocean circulation patterns in the southeast Pacific region is investigated by combining environmental analyses of cyclic Middle Eocene sediments and palynomorph records recovered from ODP Hole 1172A on the East Tasman Plateau with climate model simulations. Integration of results indicates that in the marine realm, direct effects of precessional forcing are not pronounced, although increased precipitation/runoff could have enhanced dinoflagellate cyst production. On the southeast Australian continent, the most pronounced effects of precessional forcing were fluctuations in summer precipitation and temperature on the Antarctic Margin. These fluctuations resulted in vegetational changes, most notably in the distribution of Nothofagus (subgenus Brassospora). The climate model results suggest significant fluctuations in sea ice in the Ross Sea, notably during Austral summers. This is consistent with the influx of Antarctic heterotrophic dinoflagellates in the early part of the studied record. The data demonstrate a strong precessionally driven climate variability and thus support the concept that precessional forcing could have played a role in early Antarctic glaciation via changes in runoff and/or precipitation.