602 resultados para Massenspektrometrie, CE-ICP-MS, Actiniden
Resumo:
The Ninetyeast Ridge (NER), a north-south striking, 5,000 km long, 77 to 43 Ma chain of basaltic submarine volcanoes in the eastern Indian Ocean formed as a hotspot track created by rapid northward migration of the Indian Plate over the Kerguelen hotspot. Based on the major and trace element contents of unaltered basaltic glasses from six locations along the NER, we show that the NER was constructed by basaltic magma derived from at least three geochemically distinct mantle sources: (1) a source enriched in highly incompatible elements relative to primitive mantle like the source of the 29-24 Ma flood basalts in the Kerguelen Archipelago; (2) an incompatible element-depleted source similar to the source of Mid-Ocean Ridge Basalt (MORB) erupted along the currently active Southeast Indian Ridge (SEIR); and (3) an incompatible element-depleted source that is compositionally and mineralogically distinct from the source of SEIR MORB. Specifically, this depleted mantle source was garnet-bearing and had higher Y/Dy and Nb/Zr, but lower Zr/Sm, than the SEIR MORB source. We infer that this third source formed as a garnet-bearing residue created during a previous melting event, perhaps an initial partial melting of the mantle hotspot. Subsequently, this residue partially melted over a large pressure range, from slightly over 3 GPa to less than 1 GPa, and to a high extent (~ 30%) thereby creating relatively high SiO2 and FeO contents in some NER basalts relative to SEIR MORB.
Resumo:
A diverse suite of geochemical tracers, including 87Sr/86Sr and 143Nd/144Nd isotope ratios, the rare earth elements (REEs), and select trace elements were used to determine sand-sized sediment provenance and transport pathways within the San Francisco Bay coastal system. This study complements a large interdisciplinary effort (Barnard et al., 2012) that seeks to better understand recent geomorphic change in a highly urbanized and dynamic estuarine-coastal setting. Sand-sized sediment provenance in this geologically complex system is important to estuarine resource managers and was assessed by examining the geographic distribution of this suite of geochemical tracers from the primary sources (fluvial and rock) throughout the bay, adjacent coast, and beaches. Due to their intrinsic geochemical nature, 143Nd/144Nd isotopic ratios provide the most resolved picture of where sediment in this system is likely sourced and how it moves through this estuarine system into the Pacific Ocean. For example, Nd isotopes confirm that the predominant source of sand-sized sediment to Suisun Bay, San Pablo Bay, and Central Bay is the Sierra Nevada Batholith via the Sacramento River, with lesser contributions from the Napa and San Joaquin Rivers. Isotopic ratios also reveal hot-spots of local sediment accumulation, such as the basalt and chert deposits around the Golden Gate Bridge and the high magnetite deposits of Ocean Beach. Sand-sized sediment that exits San Francisco Bay accumulates on the ebb-tidal delta and is in part conveyed southward by long-shore currents. Broadly, the geochemical tracers reveal a complex story of multiple sediment sources, dynamic intra-bay sediment mixing and reworking, and eventual dilution and transport by energetic marine processes. Combined geochemical results provide information on sediment movement into and through San Francisco Bay and further our understanding of how sustained anthropogenic activities which limit sediment inputs to the system (e.g., dike and dam construction) as well as those which directly remove sediments from within the Bay, such as aggregate mining and dredging, can have long-lasting effects.
Resumo:
Authigenic ferromanganese manifestations in bottom sediments from two horizons (0-10 and 240-250 cm) located in the low/high bioproductive transitional zone of the Pacific Ocean were studied. In addition two compositionally different types of micronodules, crusts and ferromanganese nodules were detected in the surface horizon (0-1 cm). Three size fractions (50-100, 100-250, and 250-500 µm) of manganese micronodules were investigated. In terms of surface morphology, color, and shape, the micronodules are divided into dull round (MN1) and angular lustrous (MN2) varieties with different mineral and chemical compositions. MN1 are enriched in Mn and depleted in Fe as compared with MN2. Mn/Fe ratio in MN1 varies from 13 to 14. Asbolane-buserite and birnessite are the major manganese minerals in them. MN2 is mainly composed of vernadite with Mn/Fe ratio from 4.3 to 4.8. Relative to MN1, fraction 50-100 µm of MN2 is enriched in Fe (2.6 times), W (1.8), Mo (3.2), Th (2.3), Ce (5.8), and REE (from 1.2 to 1.8). Relative to counterparts from MN1, separate fractions of MN2 are characterized by greater compositional difference. For example, increase in size of micronodules leads to decrease in contents of Fe (by 10 rel. %), Ce (2 times), W (2.1 times), Mo (2.2 times), and Co (1.5 times). At the same time one can see increase in contents of other elements: Th and Cu (2.1 times), Ni (1.9 times), and REE (from 1.2 to 1.6 times). Differences in chemical and mineral compositions of MN1 and MN2 fractions can be related to alternation of oxidative and suboxidative conditions in the sediments owing to input of labile organic matter, which acts as the major reducer, and allochthonous genesis of MN2.
Resumo:
An isotope-geochemical study of Eocene-Oligocene magmatic rocks from the Western Kamchatka-Koryak volcanogenic belt revealed lateral heterogeneity of mantle magma sources in its segments: Western Kamchatka, Central Koryak, and Northern Koryak ones. In the Western Kamchatka segment magmatic melts were generated from isotopically heterogeneous (depleted and/or insignificantly enriched) mantle sources significantly contaminated by quartz-feldspathic sialic sediments; higher 87Sr/86Sr (0.70429-0.70564) and lower 143Nd/144Nd [eNd(T) = 0.06-2.9] ratios in volcanic rocks from the Central Koryak segment presumably reflect contribution of an enriched mantle source; high positive eNd(T) and low 87Sr/86Sr ratios in magmatic rocks from the Northern Koryak segment area indicate their derivation from an isotopically depleted mantle source without significant contamination by sialic or mantle material enriched in radiogenic Sr and Nd. Significantly different contamination histories of Eocene-Oligocene mantle magmas in Kamchatka and Koryakia are related to their different thermal regimes: higher heat flow beneath Kamchatka led to crustal melting and contamination of mantle suprasubduction magmas by crustal melts. Cessation of suprasubduction volcanism in the Western Kamchatka segment of the continental margin belt was possibly related to accretion of the Achaivayam-Valagin terrane 40 Ma ago, whereas suprasubduction activity in the Koryak segment stopped due to closure of the Ukelayat basin in Oligocene.
Resumo:
This study presents osmium (Os) isotope and elemental data for cleaned planktic foraminifera, authigenic Fe-Mn oxyhydroxides and pelagic carbonate host sediments from ODP site 758 in the southernmost reaches of the Bay of Bengal. The Os in the bulk sediments appears to be dominantly hydrogeneous (sourced by carbonate and Fe-Mn oxyhydroxide), but variations in this particular core are controlled by the presence of volcanic ash. Fe-Mn oxyhydroxide leachates (of the bulk sediments) from Holocene samples also yield an Os isotope composition close to that of seawater, but the record diverges from that of foraminifera at a depth corresponding to the oxic/post-oxic boundary, suggesting diagenetic mobilization of Os at depths below this. Holocene planktic foraminifera, cleaned using oxidative-reductive techniques, also give Os isotope compositions indistinguishable from modern seawater, but the record obtained for the past 150 kyr shows strong covaraitions of 187Os/188Os with both the local and global oxygen isotope record, with less radiogenic Os isotope compositions during glacial intervals. These results indicate that foraminifera provide a robust record of seawater Os isotope compositions, and comparison of the data obtained here with records from the other major oceans demonstrate global changes in 187Os/188Os over this time interval, while the covariation with oxygen isotopes suggest a process controlling the Os isotope composition that is in phase with global climate cycles. Global excursions to relatively unradiogenic 187Os/188Os during glacial intervals are consistent with decreased input of radiogenic continental material, reflecting cooler temperatures and reduced continental runoff. Modelling indicates that the shift to unradiogenic values during glacial intervals could be caused by an ~30% decrease in the global river flux, with an ~5% change in river composition. If the residence time of Os in the oceans is ~5 ka then the post-glacial recovery to present-day seawater values is consistent with a corresponding increase in the river flux of around 30%. However, if the residence time of Os is closer to 40 ka, as is suggested by the global river flux, then this demands either significant changes in both the riverine Os flux and composition of around 40% and 30%, respectively, that closely follow the oxygen isotope record, or else a short-lived post-glacial pulse of weathering some 75% greater than the steady-state flux. In either case, these results clearly indicate that climatic changes affect both the flux and composition of weathered material delivered to the oceans on glacial-interglacial timescales.
Resumo:
New Sr-Nd-Pb-Hf data require the existence of at least four mantle components in the genesis of basalts from the the North Atlantic Igneous Province (NAIP): (1) one (or more likely a small range of) enriched component(s) within the Iceland plume, (2) a depleted component within the Iceland plume (distinct from the shallow N-MORB source), (3) a depleted sheath surrounding the plume and (4) shallow N-MORB source mantle. These components have been available since the major phase of igneous activity associated with plume head impact during Paleogene times. In Hf-Nd isotope space, samples from Iceland, DSDP Leg 49 (Sites 407, 408 and 409), ODP Legs 152 and 163 (southeast Greenland margin), the Reykjanes Ridge, Kolbeinsey Ridge and DSDP Leg 38 (Site 348) define fields that are oblique to the main ocean island basalt array and extend toward a component with higher 176Hf/177Hf than the N-MORB source available prior to arrival of the plume, as indicated by the compositions of Cretaceous basalts from Goban Spur (~95 Ma). Aside from Goban Spur, only basalts from Hatton Bank on the oceanward side of the Rockall Plateau (DSDP Leg 81) lie consistently within the field of N-MORB, which indicates that the compositional influence of the plume did not reach this far south and east ~55 Ma ago. Thus, Hf-Nd isotope systematics are consistent with previous studies which indicate that shallow MORB-source mantle does not represent the depleted component within the Iceland plume (Thirlwall, J. Geol. Soc. London 152 (1995) 991-996; Hards et al., J. Geol. Soc. London 152 (1995) 1003-1009; Fitton et al., 1997 doi:10.1016/S0012-821X(97)00170-2). They also indicate that the depleted component is a long-lived and intrinsic feature of the Iceland plume, generated during an ancient melting event in which a mineral (such as garnet) with a high Lu/Hf was a residual phase. Collectively, these data suggest a model for the Iceland plume in which a heterogeneous core, derived from the lower mantle, consists of 'enriched' streaks or blobs dispersed in a more depleted matrix. A distinguishing feature of both the enriched and depleted components is high Nb/Y for a given Zr/Y (i.e. positive DeltaNb), but the enriched component has higher Sr and Pb isotope ratios, combined with lower epsilon-Nd and epsilon-Hf. This heterogeneous core is surrounded by a sheath of depleted material, similar to the depleted component of the Iceland plume in its epsilon-Nd and epsilon-Hf, but with lower 87Sr/86Sr, 208Pb/204Pb and negative DeltaNb; this material was probably entrained from near the 670 km discontinuity when the plume stalled at the boundary between the upper and lower mantle. The plume sheath displaced more normal MORB asthenosphere (distinguished by its lower epsilon-Hf for a given epsilon-Nd or Zr/Nb ratio), which existed in the North Atlantic prior to plume impact. Preliminary data on MORBs from near the Azores plume suggest that much of the North Atlantic may be 'polluted' not only by enriched plume material but also by depleted material similar to the Iceland plume sheath. If this hypothesis is correct, it may provide a general explanation for some of the compositional diversity and variations in inferred depth of melting (Klein and Langmuir, 1987 doi:10.1029/JB092iB08p08089) along the MAR in the North Atlantic.
Resumo:
Site 1276, Leg 210 of the Ocean Drilling Program, was located on the Newfoundland margin in a seismically-defined ~128 Ma "transitional" crust just west of the presumed oceanic crust, and the M3 magnetic anomaly. The goal of drilling on this non-volcanic margin was to study the rifting, nature of basement, and post-rift sedimentation in the Newfoundland-Iberia rift. Drilling of this 1739 m hole was terminated 90-160 m above basement, in the lower of a doublet of alkaline diabase sills. We have carried out geochemical studies of the sill complex, in the hopes that they will provide proxy information regarding the nature of the underlying basement. Excellent 40Ar/39Ar plateau ages were obtained for the two sills: upper sill ~105.3 Ma; lower sill ~97.8 Ma. Thus the sills are substantially younger than the presumed age of the seafloor at site 1276 (~128 Ma), and were intruded beneath substantial sediment overburden (250 m for the upper, older sill, and 575 m for the lower younger sill). While some of the geochemistry of the sills has been compromised by alteration, the "immobile" trace elements show these sills to be hawaiites, differentiated from an enriched alkaline or basanitic parentage. Sr, Nd and Pb isotopes are suggestive of an enriched hotspot/plume mantle source, with a possible "added" component of continental material. These sills unequivocally were not derived from typical MORB (asthenospheric) upper mantle.
Resumo:
Alpine glacier samples were collected in four contrasting regions to measure supraglacial dust and debris geochemical composition. A total of 70 surface glacier ice, snow and debris samples were collected in 2009 and 2010 in Svalbard, Norway, Nepal and New Zealand. Trace elemental abundances in snow and ice samples were measured via inductively coupled plasma mass spectrometry (ICP-MS). Supraglacial debris mineral, bulk oxide and trace element composition were determined via X-ray diffraction (XRD) and X-ray fluorescence spectroscopy (XRF). A total of 45 elements and 10 oxide compound abundances are reported. The uniform data collection procedure, analytical measurement methods and geochemical comparison techniques are used to evaluate supraglacial dust and debris composition variability in the contrasting glacier study regions. Elemental abundances revealed sea salt aerosol and metal enrichment in Svalbard, low levels of crustal dust and marine influences to southern Norway, high crustal dust and anthropogenic enrichment in the Khumbu Himalayas, and sulfur and metals attributed to quiescent degassing and volcanic activity in northern New Zealand. Rare earth element and Al/Ti elemental ratios demonstrated distinct provenance of particulates in each study region. Ca/S elemental ratio data showed seasonal denudation in Svalbard and Norway. Ablation season atmospheric particulate transport trajectories were mapped in each of the study regions and suggest provenance pathways. The in situ data presented provides first order glacier surface geochemical variability as measured from four diverse alpine glacier regions. This geochemical surface glacier data is relevant to glaciologic ablation rate understanding as well as satellite atmospheric and land-surface mapping techniques currently in development.
Resumo:
Peridotite samples recovered from IODP Site U1309 at the Atlantis Massif in the Mid-Atlantic Ridge were examined to understand magmatic processes for the oceanic core complex formation. Original peridotite was fragmented, and the limited short peridotite intervals are now surrounded by a huge gabbro body probably formed by late-stage melt injections. Each peridotite interval has various petrographical and geochemical features. A spinel harzburgite in contact with gabbro shows evidence of limited melt penetrations causing gradual compositional change, in terms of trace-element compositions of pyroxenes, as well as modal change near the boundary. Geochemistry of clinopyroxenes with least melt effects indicates that the harzburgite is originally mantle residue formed by partial melting under polybaric conditions, and that such a depleted peridotite is one of the components of the oceanic core complex. Some of plagioclase-bearing peridotites, on the other hand, have more complicated origin. Although their original features were partly overprinted by the injected melt, the original peridotites, both residual and non-residual materials, were possibly derived from the upper mantle. This suggests that the melt injected around an upper mantle region or into mantle material fragments. The injected melt was possibly generated at the ridge-segment center and, then, moved and evolved toward the segment end beneath the oceanic core complex.
Resumo:
In the southeast of the Bolshoi Lyakhovsky Island there are outcrops of tectonic outliers composed of low-K medium-Ti tholeiitic basic rocks represented by low altered pillow basalts, as well as by their metamorphosed analogs: amphibolites and blueschists. The rocks are depleted in light rare-earth elements and were melted out of a depleted mantle source enriched in Th, Nb, and Zr also contributed to the rock formation. The magma sources were not affected by subduction-related fluids or melts. The rocks were part of the Jurassic South Anyui ocean basin crust. The blueschists are the crust of the same basin submerged beneath the more southern Anyui-Svyatoi Nos arc to depth of 30-40 km. Pressure and temperature of metamorphism suggest a setting of "warm" subduction. Mineral assemblages of the blueschists record time of a collision of the Anyui-Svyatoi Nos island arc and the New Siberian continental block expressed as a counter-clockwise PT trend. The pressure jump during the collision corresponds to heaping of tectonic covers above the zone of convergence 12 km in total thickness. Ocean rocks were thrust upon the margin of the New Siberian continental block in late Late Jurassic - early Early Cretaceous and mark the NW continuation of the South Anyui suture, one of the main tectonic sutures of the Northeastern Asia.
Resumo:
Silicic Fe-Ti-oxide magmatic series was the first recognized in the Sierra Leone axial segment of the Mid-Atlantic Ridge near 6°N. The series consists of intrusive rocks (harzburgites, lherzolites, bronzitites, norites, gabbronorites, hornblende Fe-Ti-oxide gabbronorites and gabbronorite-diorites, quartz diorites, and trondhjemites) and their subvolcanic (ilmenite-hornblende dolerites) and, possibly, volcanic analogues (ilmenite-bearing basalts). Deficit of most incompatible elements in the rocks of the series suggests that parental melts derived from a source that had already been melted. Correspondingly, these melts could not be MORB derivatives. Origin of the series is thought to be related to melting of the hydrated oceanic lithosphere during emplacement of an asthenospheric plume (protuberance on the surface of large asthenospheric lens beneath MAR). Genesis of different melts was supposedly controlled by ascent of a chamber of hot mantle magmas thought this lithosphere in compliance with the zone melting mechanism. Melt acquired fluid components from heated rocks at peripheries of the plume and became enriched in Fe, Ti, Pb, Cu, Zn, and other components mobile in fluids.
Resumo:
New trace element analyses are presented for Leg 180 dolerites, basalts from the Papuan Ultramafic Belt (PUB), and basement rocks of Woodlark Island. The Leg 180 dolerites are similar to those from Woodlark Island in being derived from an enriched source but differ from the PUB, which came from a source similar to normal mid-ocean ridge basalts. A reliable 40Ar/39Ar age of 54.0 ± 1.0 Ma has been obtained by step heating of a whole-rock sample from Site 1109, and a similar but less reliable age was obtained for a sample from Site 1118. Plagioclase from Site 1109 did not give a meaningful age. This age is broadly similar to ages from the Dabi volcanics of the nearby Cape Vogel and for the PUB.
Resumo:
Three distinct, spatially separated crustal terranes have been recognised in the Shackleton Range, East Antarctica: the Southern, Eastern and Northern Terranes. Mafic gneisses from the Southern Terrane provide geochemical evidence for a within-plate, probably back-arc origin of their protoliths. A plume-distal ridge origin in an incipient ocean basin is the favoured interpretation for the emplacement site of these rocks at c. 1850 Ma, which, together with a few ocean island basalts, were subsequently incorporated into an accretionary continental arc/supra-subduction zone tectonic setting. Magmatic underplating resulted in partial melting of the lower crust, which caused high-temperature granulite-facies metamorphism in the Southern Terrane at c. 1710-1680 Ma. Mafic and felsic gneisses there are characterised by isotopically depleted, positive Nd and Hf initials and model ages between 2100 and 2000 Ma. They may be explained as juvenile additions to the crust towards the end of the Palaeoproterozoic. These juvenile rocks occur in a narrow, c. 150 km long E-W trending belt, inferred to trace a suture that is associated with a large Palaeoproterozoic accretionary orogenic system. The Southern Terrane contains many features that are similar to the Australo-Antarctic Mawson Continent and may be its furthermost extension into East Antarctica. The Eastern Terrane is characterised by metagranitoids that formed in a continental volcanic arc setting during a late Mesoproterozoic orogeny at c. 1060 Ma. Subsequently, the rocks experienced high-temperature metamorphism during Pan-African collisional tectonics at 600 Ma. Isotopically depleted zircon grains yielded Hf model ages of 1600-1400 Ma, which are identical to Nd model ages obtained from juvenile metagranitoids. Most likely, these rocks trace the suture related to the amalgamation of the Indo-Antarctic and West Gondwana continental blocks at ~600 Ma. The Eastern Terrane is interpreted as the southernmost extension of the Pan-African Mozambique/Maud Belt in East Antarctica and, based on Hf isotope data, may also represent a link to the Ellsworth-Whitmore Mountains block in West Antarctica and the Namaqua-Natal Province of southern Africa. Geochemical evidence indicates that the majority of the protoliths of the mafic gneisses in the Northern Terrane formed as oceanic island basalts in a within-plate setting. Subsequently the rocks were incorporated into a subduction zone environment and, finally, accreted to a continental margin during Pan-African collisional tectonics. Felsic gneisses there provide evidence for a within-plate and volcanic arc/collisional origin. Emplacement of granitoids occurred at c. 530 Ma and high-temperature, high-pressure metamorphism took place at 510-500 Ma. Enriched Hf and Nd initials and Palaeoproterozoic model ages for most samples indicate that no juvenile material was added to the crust of the Northern Terrane during the Pan-African Orogeny but recycling of older crust or mixing of crustal components of different age must have occurred. Isotopically depleted mafic gneisses, which are spatially associated with eclogite-facies pyroxenites, yielded late Mesoproterozoic Nd model ages. These rocks occur in a narrow, at least 100 km long, E-W trending belt that separates alkaline ocean island metabasalts and within-plate metagranitoids from volcanic arc metabasalts and volcanic arc/syn-collisional metagranitoids in the Northern Terrane. This belt is interpreted to trace the late Neoproterozoic/early Cambrian Pan-African collisional suture between the Australo-Antarctic and the combined Indo-Antarctic/West Gondwana continental blocks that formed during the final amalgamation of Gondwana.
Resumo:
This paper reports results of geological studies carried out during two marine expeditions of R/VAkademik M.A. Lavrent'ev (Cruises 37 and 41) in 2005 and 2006 at the underwater Vityaz Ridge. Dredging has yielded various rocks from the basement and sedimentary cover of the ridge within three polygons. On the basis of radioisotope age determinations, petrochemical, and paleontological data all the rocks have been subdivided into the following complexes: volcanic rock of Paleocene, Eocene, Late Oligocene, Middle Miocene, and Pliocene-Pleistocene; volcanogenic-sedimentary rocks of Late Cretaceous - Early Paleocene, Paleogene (undifferentiated), Oligocene - Early Miocene, and Pliocene-Pleistocene. Determinations of age and chemical composition of the rocks have enabled to specify formation conditions of the complexes and to trace geological evolution of the Vityaz Ridge. Presence of young Pliocene-Pleistocene volcanites allows to conclude about the modern tectono-magmatic activity of the central part of the Pacific slope of the Kuril Islands.
Resumo:
Ferromanganese micro- and macronodules in eupelagic clays at Site AKO26-35 in the Southwest Pacific Basin were studied in order to check REE distribution during ferromanganese ore formation in non-productive zones of the Pacific Ocean. Host sediments and their labile fraction, ferromanganese micronodules (in size fractions 50-100, 100-250, 250-500, and >500 ?m) from eupelagic clays (horizons 37-10, 105-110, 165-175, and 189-190 cm), and buried ferromanganese micronodules (horizons 64-68, 158-159, and 165-166 cm) were under study. Based on partition analysis data anomalous REE enrichment in eupelagic clays from Site AKO26-35 is related to accumulation of rare earth elements in iron hydroxophosphates. Concentration of Ce generally bound with manganese oxyhydroxides is governed by oxidation of Mn and Ce in ocean surface waters. Micronodules (with Mn/Fe from 0.7 to 1.6) inherit compositional features of the labile fraction of bottom sediments. Concentrations of Ce, Co, and Th depend on micronodule sizes. Enrichment of micronodules in hydrogenic or hydrothermal matter is governed by their sizes and by a dominant source of suspended oxyhydroxide material. The study of buried ferromanganese micronodules revealed general regularities in compositional evolution of oxyhydroxide matrices of ferromanganese micro- and macronodules. Compositional variation of micro- and macronodules relative to the labile fraction of sediments in the Pacific non-productive zone dramatically differs from the pattern in bioproductive zones where micronodule compositions in coarser fractions are similar to those in associated macronodules and labile fractions of host sediments due to more intense suboxidative diagenesis.