211 resultados para Martensite volume fraction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable oxygen and carbon isotope measurements (d18O and d13C) of planktonic and benthic foraminifers were conducted to assess the temperature history and circulation patterns over Shatsky Rise during the Paleocene and Eocene. A record of Mg/Ca for benthic foraminifers was also constructed in order to better determine the relative influence of temperature, salinity, and/or ice volume upon the benthic d18O record. Isotopic analyses were carried out on several planktonic taxa (Acarinina, Morozovella, Globigerinatheka, Praemurica, and Subbotina) as well as several benthic taxa (Nuttalides, Oridorsalis, Cibicidoides, Gavelinella, and Lenticulina). Elemental analyses were restricted to three benthic taxa: Nuttalides, Oridorsalis, and Gavelinella. All specimens were derived from the composite sediment section recovered from Ocean Drilling Program Site 1209 on the Southern High of Shatsky Rise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used piston cores recovered in the western Bering Sea to reconstruct millennial-scale changes in marine productivity and terrigenous matter supply over the past ~180 kyr. Based on a geochemical multi-proxy approach, our results indicate closely interacting processes controlling marine productivity and terrigenous matter supply comparable to the situation in the Okhotsk Sea. Overall, terrigenous inputs were high, whereas export production was low. Minor increases in marine productivity occurred during intervals of Marine Isotope Stage 5 and interstadials, but pronounced maxima were recorded during interglacials and Termination I. The terrigenous material is suggested to be derived from continental sources on the eastern Bering Sea shelf and to be subsequently transported via sea ice, which is likely to drive changes in surface productivity, terrigenous inputs, and upper-ocean stratification. From our results we propose glacial, deglacial, and interglacial scenarios for environmental change in the Bering Sea. These changes seem to be primarily controlled by insolation and sea-level forcing which affect the strength of atmospheric pressure systems and sea-ice growth. The opening history of the Bering Strait is considered to have had an additional impact. High-resolution core logging data (color b*, XRF scans) strongly correspond to the Dansgaard-Oeschger climate variability registered in the NGRIP ice core and support an atmospheric coupling mechanism of Northern Hemisphere climates.