168 resultados para Maria Zulmira Castanheira


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microzooplankton grazing dilution experiments were conducted at stations 126, 127, 131 and 133-137, following Landry & Hassett (1982). Seawater samples (whole seawater - WSW) were taken via Niskin bottles mounted on to a CTD Rosette out of the chlorophyll maximum at each station. Four different dilution levels were prepared with WSW and GF/F filtered seawater - 100% WSW, 75% WSW, 50% WSW and 25% WSW. The diluted WSW was filled in 2.4 L polycarbonate bottles (two replicates for every dilution level). Three subsamples (250 - 500 mL depending on in situ chlorophyll) of the 100% WSW were filtered on to GF/F filters (25 mm diameter) and chlorophyll was extracted in 5 mL 96% ethanol for 12-24 hours. Afterwards it was measured fluorometrically before and after the addition of HCl with a Turner fluorometer according to Jespersen and Christoffersen (1987) on board of the ship. In addition, one 250 mL subsample of the 100% WSW was fixed in 2% Lugol (final concentration), to determine the microzooplankton community when back at the Institute for Hydrobiology and Fisheries Science in Hamburg. Also, one 50 mL subsample of the 100% WSW was fixed in 1 mL glutaraldehyde, to quantify bacteria abundance. The 2.4 L bottles were put in black mesh-bags, which reduced incoming radiation to approximately 50% (to minimize chlorophyll bleaching). The bottles were incubated for 24 hours in a tank on deck with flow-through water, to maintain in situ temperature. An additional experiment was carried out to test the effect of temperature on microzooplankton grazing in darkness. Therefore, 100% WSW was incubated in the deck tank and in two temperature control rooms of 5 and 15°C in darkness (two bottles each). The same was done with bottles where copepods were added (five copepods of Calanus finmarchicus in each bottle; males and females were randomly picked and divided onto the bottles). In addition, two 100% WSW bottles with five copepods each were incubated at in situ temperature at 100% light level (without mesh-bags). All experiments were incubated for 24 hours and afterwards two subsamples of each bottle were filtered on to GF/F filters (25 mm diameter); 500 - 1000 mL depending on in situ chlorophyll. One 250 mL subsample of one of the two replicates of each dilution level and each additional experiment (temperature and temperature/copepods) was fixed in 5 mL lugol for microzooplankton determination. One 50 mL subsample of one of the two 100% WSW bottles as well as of one of the additional experiments without copepods was fixed in 1 mL glutaraldehyde for bacteria determination later on. Copepods were fixed in 4% formaldehyde for length measurements and sex determination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flemish Pass, located at the western subpolar margin, is a passage (sill depth 1200 m) that is constrained by the Grand Banks and the underwater plateau Flemish Cap. In addition to the Deep Western Boundary Current (DWBC) pathway offshore of Flemish Cap, Flemish Pass represents another southward transport pathway for two modes of Labrador Sea Water (LSW), the lightest component of North Atlantic Deep Water carried with the DWBC. This pathway avoids potential stirring regions east of Flemish Cap and deflection into the interior North Atlantic. Ship-based velocity measurements between 2009 and 2013 at 47°N in Flemish Pass and in the DWBC east of Flemish Cap revealed a considerable southward transport of Upper LSW through Flemish Pass (15-27%, -1.0 to -1.5 Sv). About 98% of the denser Deep LSW were carried around Flemish Cap as Flemish Pass is too shallow for considerable transport of Deep LSW. Hydrographic time series from ship-based measurements show a significant warming of 0.3°C/decade and a salinification of 0.03/decade of the Upper LSW in Flemish Pass between 1993 and 2013. Almost identical trends were found for the evolution in the Labrador Sea and in the DWBC east of Flemish Cap. This indicates that the long-term hydrographic variability of Upper LSW in Flemish Pass as well as in the DWBC at 47°N is dominated by changes in the Labrador Sea, which are advected southward. Fifty years of numerical ocean model simulations in Flemish Pass suggest that these trends are part of a multidecadal cycle.