82 resultados para Low temperature synthesis
Resumo:
The Logatchev hydrothermal vent field (14°45'N, Mid-Atlantic Ridge) is located in a ridge segment characterized by mantle-derived ultramafic outcrops. Compared to basalt-hosted vents, Logatchev high temperature fluids are relatively low in sulfide indicating that the diffuse, low temperature fluids of this vent field may not contain sufficient sulfide concentrations to support a chemosymbiotic invertebrate community. However, the high abundances of bathymodiolin mussels with bacterial symbionts related to free-living sulfur oxidizing bacteria suggested that bioavailable sulfide is present at Logatchev. To clarify if diffuse fluids above mussel beds of Bathymodiolus puteoserpentis provide the reductants and oxidants needed by their symbionts for aerobic sulfide oxidation, in situ microsensor measurements of dissolved hydrogen sulfide and oxygen were combined with simultaneous temperature measurements. High temporal fluctuations of all three parameters were measured above the mussel beds. H2S and O2 co-existed with mean concentrations between 9-31 µM (H2S) and 216-228 µM (O2). Temperature maxima (<= 7.4°C) were generally concurrent with H2S maxima (<= 156 µM) and O2 minima (>= 142 µM). Long-term measurements for 250 days using temperature as a proxy for oxygen and sulfide concentrations indicated that the mussels were neither oxygen- nor sulfide-limited. Our in situ measurements at Logatchev indicate that sulfide may also be bioavailable in diffuse fluids from other ultramafic-hosted vents along slow- and ultraslow-spreading ridges.
Resumo:
Shipboard studies during Ocean Drilling Program Leg 187 (Australian Antarctic Discordance, AAD) suggested that there was no discernible coincidence between the interpreted age of rocks recovered and the intensity of alteration observed. Samples from the oldest sites occupied appeared to exhibit the least overall effects of alteration, and the intensity of alteration varied from site to site. Previous investigations of low-temperature alteration in oceanic basement samples have been restricted by the myopic perspective provided by single drill holes or dredge collections. Combining core samples from Leg 187 and dredge samples from the AAD collection at Oregon State University (USA) offers the unique opportunity to investigate mineral and bulk chemical changes attending alteration of basalt over a range of ages from 0 to 28 Ma. Results of this research indicate that there is a general increase in the intensity of alteration as the basalts age and mosve off axis, but that this relationship is somewhat veiled by the dominating control on alteration intensity dictated by variations in permeability.
Resumo:
Electron microprobe and thermomagnetic analyses of selected basalt samples from Hole 597C were performed. The main purpose of this work was to investigate and estimate the degree of oxidation of the samples using the ratios of Fe to Ti and the Curie temperatures obtained from thermomagnetic curves. The results show that the magnetic properties of samples from Hole 597C change at a sub-bottom depth of 100 m, and that low-temperature and high-temperature oxidation processes prevailed above and below 100 m, respectively.