389 resultados para Late Iron Age
Resumo:
Dinoflagellate stratigraphy is described for the section from 364.75 to 843.85 meters below seafloor (mbsf) at Site 1148 (Sections 184-1148A-40X-1 through 76X-6 and 184-1148B-39X-CC through 56X-1) in the South China Sea. Two assemblage zones and two subzones are defined, based on characteristics of the assemblages and lowest/highest occurrences of some key species. These are the Cleistosphaeridium diversispinosum Assemblage Zone (Zone A; Oligocene), with the Enneadocysta pectiniformis Subzone (Subzone A-1) and the Cordosphaeridium gracile Subzone (Subzone A-2), and the Polysphaeridium zoharyi Assemblage Zone (Zone B; early Miocene). The highest concurrent occurrence of Enneadocysta arcuata, Eneadocysta multicornuta, Homotryblium plectilum, and Homotryblium tenuispinosum delineates the upper boundary of Zone A, which appears to mark a hiatus. Subzone A-1 is of early Oligocene age, as evidenced by the highest occurrences of E. pectiniformis and Phthanoperidinium amoenum at the upper boundary of the subzone. Subzone A-2 is of late Oligocene age based on the highest occurrences of C. gracile and Wetzeliella gochtii close to the upper boundary of the subzone and the occurrence of Distatodinium ellipticum and Membranophoridium aspinatum within the subzone. Zone B is dated as early Miocene based on the lowest occurrences of Cerebrocysta satchelliae, Hystrichosphaeropsis obscura, Melitasphaeridium choanophorum, Membranilarnacia? picena, and Tuberculodinium vancampoae within the zone. The present assemblage zones/subzones are correlative to various degrees with coeval zones/assemblages from areas of high to low latitudes in terms of common key species. We have compared the species content of the assemblage Zones A and B, and the subzones A-1 and A-2, with coeval assemblage(s)/zone(s) described from many, often widely distant, high- and low-latitude regions of the world. These comparisons show that, to various degrees and aside from a number of key species, the coordinated presence of certain important species may also help to assign an age to a given assemblage.
Resumo:
On the continental rise west of the Antarctic Peninsula there are nine large mounds interpreted as sediment drifts, separated by turbidity current channels. Drift 7 is 150 km long, 70 km wide and up to 700 m high and is asymmetric, with steep sides on the south-east (towards the continent) and south-west, and gentle slopes to north-west and north-east. Cores on the gentle sides of the drift show a cyclicity between brown, bioturbated, diatom-bearing mud with foraminifera and radiolarians, and grey, laminated, barren mud. Biostratigraphic evidence is consistent with a Late Quaternary age. Detailed lithostratigraphy and magnetic susceptibility data allow precise correlation over distances of tens of kilometres. On the basis of chemostratigraphy, the brown sediment is interpreted as interglacial (isotope stages 1 and 5) and the grey as glacial (stages 2-4 and 6). Sedimentation rates are 3.0-5.5 cm/ka. Cores on the steep sides of the drift recovered a condensed section with thinner cycles and hiatuses. Fine grain size, very poor sorting and the absence of a mode in the silt size range indicate deposition from suspension with only weak current activity, There is little evidence for cyclic changes in bottom current strength. Supply of sediment to the benthic nepheloid layer was by entrainment ofmud from turbidity currents, and by settling ofpelagic material (biogenic grains, IRD, sediment suspended in meltwater plumes). Cyclic changes in sediment supply include more biogenic supply in interglacials with less sea ice cover, more terrigenous supply from turbidites in glacials with ice sheets grounded to the shelf edge, and changes in IRD content.
Resumo:
A Pliocene (2.6-3.5 Ma) age is determined from glacial sediments studied in a 20m long, 4 m deep trench excavated in Heidemann Valley, Vestfold Hills, East Antarctica. The age determination is based on a combined study of amino acid racemization, diatoms, foraminifera, and magnetic polarity, and supports earlier estimates of the age of the sedimentary section; all are beyond 14C range. Four till units are recognized and documented, and 16 subunits are identified. All are ascribed to deposition during a Late Pliocene glaciation that was probably the last time the entire Vestfold Hills was covered by an enlarged East Antarctic Ice Sheet (EAIS). Evidence for other more recent glacial events of the 'Vestfold Glaciation' may have been due to lateral expansion of the Sorsdal Glacier and limited expansion of the icesheet margin during the Last Glacial Maximum rather than a major expansion of the EAIS. The deposit appears to correlate with a marine deposition event recorded in Ocean Drilling Program Site 1166 in Prydz Bay, possibly with the Bardin Bluffs Formation of the Prince Charles Mountains and with part of the time represented in the ANDRILL AND-1B core in the Ross Sea.
Resumo:
Six sediment cores from the submarine delta of the Rud Hilla River in the northern part of the Persian Gulf consist of fine grained,homogeneous Holocene marls. The coarse (> 63 ~) fraction varies from 0.3 - 3.5 %. The cores are 2 - 4 m long and were taken in water depths of 8 - 56 m. In spite of the great similarity and homogeneity of the cored sediments, correspondence analysis (an extension of factor analysis) of the coarse fraction reveals the presence of four distinctive sedimentary facies: (1) a minerogenic facies, 10 km from the estuary; (2) an ophiuroidostracod facies near a lateral margin of the delta, 12 - 15 km from the estuary, (3) a benthic foraminiferal-molluskan facies, in the central part of the delta 20 km from the estuary, and near its seaward margin 120 km from the estuary, (4) a gastropod-epibiotic facies, in an area of relatively slow sedimentation on the border of the delta, 90 km from the estuary. A seventh core, taken near the seaward margin of the delta of the Rud Hilla River, penetrated homogeneous, aragonite-rich mud of late Pleistocene age. Correspondence analysis of the sand fraction of the Pleistocene sediments leads to the definition of two facies that can be readily compared with the facies identified in the Holocene cores.
Resumo:
In this chapter, we will report on the amino acids in the total acid hydrolysate of eight sediment samples from Leg 68 Site 502. This site was located on a topographic high at a depth of 3051 meters in the Colombian Basin of the western Caribbean Sea. Four holes were cored at the site by means of the hydraulic piston corer to a maximum sediment depth of 218 meters. The composite section is a virtually continuous, undisturbed sediment record covering almost 8 million years from the Holocene to late Miocene. Age estimates for the section are based on excellent magnetostratigraphic and biostratigraphic records. Four lithostratigraphic units (A, B, C, and D) were recognized, based on differences in color and content of clay, ash, foraminifers, and siliceous microfossils (Prell, Gardner, et al., 1980): A, yellowish brown to light brownish gray foraminifer-bearing (> 10%) nannofossil marl; B, gray to olive gray foraminifer-bearing nannofossil marl with occasional ash beds; C, light gray to dark greenish gray calcareous clay and foraminifer-bearing (< 10%) nannofossil marl; D, pale green to grayish green calcareous, ash-bearing clay with siliceous microfossils. The calcium carbonate content of these sediments increases from about 27 to about 49% from late Miocene to middle Pliocene (about 3.6 Ma) and remains uniform at about 48 to 50% from that time throughout the Quaternary. The eight sediment samples for amino acid analyses came from the third (502B) and fourth (502C) holes at Site 502. Samples ranged in sub-bottom depth from 4.3 to 225 meters spanning time from 0.3 to 7.7 Ma.
Resumo:
A palynological study of a 15 m sediment core from the centre of Lake Wollingst (water depth 14,5 m) is presented. The pollen record shows 3 lateglacial thermomers, called Meiendorf, Bölling, Alleröd and the early holocene Friesland-Thermomer. The succession of forest vegetation taking place on the lake surroundings during the Holocene was typical for older moraine soils which are poor in nutrients: forest vegetation started with birch and pine, followed by hazel, oak and elm in the Boreal and by alder, lime and ash-tree in the Atlantic. Beech and hornbeam reached the area during Subboreal. However, due to the poor soils they spread out only after the Iron Age. With the deforestation during the medieval time the lake lost its character of a primeval forest lake. Lake Wollingst was oligotrophic since its origin at the end of the Pleniglacial. After medieval forest-clearing the lake has changed its quality of water particularly in connection with hemp- and flax-rotting. The modem sediments in this profile are completely disturbed. They contain reworked material, a lot of blue-green algae and remains of Bosmina longirostris indicating eutrophic conditions.
Resumo:
Hide Intense debate persists about the climatic mechanisms governing hydrologic changes in tropical and subtropical southeast Africa since the Last Glacial Maximum, about 20,000 years ago. In particular, the relative importance of atmospheric and oceanic processes is not firmly established. Southward shifts of the intertropical convergence zone (ITCZ) driven by high-latitude climate changes have been suggested as a primary forcing, whereas other studies infer a predominant influence of Indian Ocean sea surface temperatures on regional rainfall changes. To address this question, a continuous record representing an integrated signal of regional climate variability is required, but has until now been missing. Here we show that remote atmospheric forcing by cold events in the northern high latitudes appears to have been the main driver of hydro-climatology in southeast Africa during rapid climate changes over the past 17,000 years. Our results are based on a reconstruction of precipitation and river discharge changes, as recorded in a marine sediment core off the mouth of the Zambezi River, near the southern boundary of the modern seasonal ITCZ migration. Indian Ocean sea surface temperatures did not exert a primary control over southeast African hydrologic variability. Instead, phases of high precipitation and terrestrial discharge occurred when the ITCZ was forced southwards during Northern Hemisphere cold events, such as Heinrich stadial 1 (around 16,000 years ago) and the Younger Dryas (around 12,000 years ago), or when local summer insolation was high in the late Holocene, i.e., during the last 4,000 years.
Resumo:
The sediment record from Rodderberg potentially provides a climate and environmental record spanning at least the last ca 130 ka. Results from a low resolution pilot study reveal characteristic fluctuations that can be related to global climate variability as reflected in marine isotope stages and document the potential of this site for continuous and high-resolution investigations of the Middle to Late Pleistocene. Here we document the tentative lithology drilled, and show how the elemental composition can be interpreted with regard to lake level fluctuations, related redox conditions, but also to grain-size distribution and changes in lacustrine productivity. Finally, based on major lithological changes, a preliminary depth/age model is suggested that allows reassessing published luminescence ages from the same site.
Resumo:
Analyses of terrigenous sediments from the Chilean continental slope off the southern border of the Atacama desert (27.5°S), focusing on illite crystallinity and the Fe:Al ratio of the sediments, reveal a high-frequency variability of the position of the Southern Westerlies, which is very similar to the coeval short-term climatic events known from Greenland ice cores and from North Atlantic sediments. Besides showing dominantly precession-driven variability in precipitation over the Andes, these analyses also reveal rapid changes in weathering intensity along the Chilean Coastal Range during the last 80,000 years. These rapid changes occur at much shorter timescales than the 19-100 kyr orbital forcing of the Milankovitch cycles.
Resumo:
To reconstruct Recent and past sedimentary environments, marine sediments of Upper Pleistocene and Holocene ages from the eastern Arctic Ocean and especially from the Nansen-Gakkel Ridge (NGR) were investigated by means of radioisotopic, geochemical and sedimentological methods. In combination with mass physical property data and lithological analysis these investigations allow clearly to characterize the depositional environments. Age dating by using the radioisotope 230Th gives evidence that the investigated sediments from the NGR are younger than 250,000 years. Identical lithological sediment sequences within and between sediment cores from the NGR can be related to sedimentary processes which are clearly controlled by palaeoclimate. The sediments consist predominantly of siliciclastic, terrigenous ice-rafted detritus (IRD) deriving from assorted and redeposited sediments from the Siberian shelfs. By their geochemical composition the sediments are similar to mudstone, graywacke and arcose. Sea-ice as well as icebergs play a major roll in marine arctic sedimentation. In the NGR area rapid change in sedimentary conditions can be detected 128,000 years ago. This was due to drastic change in the kind of ice cover, resulting from rapid climatic change within only hundreds of years. So icebergs, deriving mostly from Siberian shelfs, vanished and sea-ice became dominant in the eastern Arctic Ocean. At least three short-period retreats of the shelf ice between 186,000 and 128,000 years are responsible for the change of coarse to fine-grained sediments in the NGR area. These warmer stages lasted between 1,000 and 3,000 years. By monitoring and comparing the distribution patterns of sedimentologic, mass physical and geochemical properties with 230Th ex activity distribution patterns in the sediment cores from the NGR, there is clear evidence that sediment dilution is responsible for high 230Th ex activity variations. Thus sedimentation rate is the controlling factor of 230Th ex activity variations. The 230Th flux density in sediments from the NGR seems to be highly dependent On topographic Position. The distribution patterns of chemical elements in sediment cores are in general governed by lithology. The derivation of a method for dry bulk density determination gave the opportunity to establish a high resolution stratigraphy on sediment cores from the eastern Arctic Ocean, based on 230Thex activity analyses. For the first time sedimentation and accumulation rates were determined for recent sediments in the eastern Arctic Ocean by 230Th ex analyses. Bulk accumulation rates are highly variable in space and time, ranging between 0.2 and 30 g/cm**2/ka. In the sediments from the NGR highly variable accumulation rates are related to the kind of ice cover. There is evidence for hydrothermal input into the sediments of the NGR. Hydrothermal activity probably also influences surficial sediments in the Sofia Basin. High contents of As are typical for surficial sediments from the NGR. In particular SL 370-20 from the bottom of the rift valley has As contents exceeding in parts 300 ppm. Hydrothermal activity can be traced back to at least 130,000 years. Recent to subrecent tectonic activity is documented by the rock debris in KAL 370 from the NGR. In four other sediment cores from the NGR rift valley area tectonically induced movements can be dated to about 130,000 years ago, related most probably to the rapid climate change. Processes of early diagenesis in sediments from the NGR caused the aobilization and redeposition of Fe, Mn and Mo. These diagenetic processes probably took place during the last 130,000 years. In sediment cores from the NGR high amounts of kaolinite are related to coarse grained siliciclastic material, probably indicating reworking and redeposition of siberian sandstones with kaolinitic binding material. In contrast to kaolinite, illite is correlated to total clay and 232Th contents. Aragonite, associated with serpentinites in the rift valley area of the NGR, was precipitated under cold bottom-water conditions. Preliminary data result in a time of formation about 60 - 80 ka ago. Manganese precipitates with high Ni contents, which can be related to the ultrabasic rocks, are of similar age.
Resumo:
A high-resolution multiproxy geochemical approach was applied to the sediments of Laguna Potrok Aike in an attempt to reconstruct moist and dry periods during the past 16 000 years in southeastern Patagonia. The age-depth model is inferred from AMS 14C dates and tephrochronology, and suggests moist conditions during the Lateglacial and early Holocene (16 000-8700 cal. BP) interrupted by drier conditions before the beginning of the Holocene (13 200-11 400 cal. BP). Data also imply that this period was a major warm phase in southeastern Patagonia and was approximately contemporaneous with the Younger Dryas chronozone in the Northern Hemisphere (12 700-11 500 cal. BP). After 8650 cal. BP a major drought may have caused the lowest lake level of the record. Since 7300 cal. BP, the lake level rose and was variable until the 'Little Ice Age', which was the dominant humid period after 8650 cal. BP.
Resumo:
Abstract: Ocean Drilling Program Sites 1001A (Caribbean Sea) and 1050C (western North Atlantic) display obliquity and precession cycles throughout polarity zone C27 of the late Danian stage (earliest Cenozoic time). Sliding-window spectra analysis and direct cycle counting on downhole logs and high-resolution Fe variations at both sites yield the equivalent of 35-36 obliquity cycles. This cycle-tuned duration for polarity chron C27 of 1.45 Ma (applying a modern mean obliquity period of 40.4 ka) is consistent with trends from astronomical tuning of early Danian polarity chron C29 and 40Ar/39Ar age calibration of the Campanian-Maastrichtian magnetic polarity time scale. The cycle-tuned Danian stage (sensu Berggren et al. 1995, in SEPM Special Publications, 54, 129-212) spans 3.65 Ma (65.5-61.85 Ma). Spreading rates on a reference South Atlantic synthetic profile display progressive slowing during the Maastrichtian to Danian stages, then remained relatively constant through late Palaeocene and early Eocene time.
Resumo:
The late Quaternary palaeoenvironmental history of the southern Windmill Islands, East Antarctica, has been reconstructed using diatom assemblages from two long, well-dated sediment cores taken in two marine bays. The diatom assemblage of the lowest sediment layers suggests a warm climate with mostly open water conditions during the late Pleistocene. During the following glacial, the Windmill Islands were covered by grounded ice preventing any in situ bioproductivity. Following deglaciation, a sapropel with a well-preserved diatom assemblage was deposited from ~10?500 cal yr BP. Between ~10?500 and ~4000 cal yr BP, total organic carbon (Corg) and total diatom valve concentrations as well as the diatom species composition suggest relatively cool summer temperatures. Hydrological conditions in coastal bays were characterised by combined winter sea-ice and open water conditions. This extensive period of glacial retreat was followed by the Holocene optimum (~4000 to ~1000 cal yr BP), which occurred later in the southern Windmill Islands than in most other Antarctic coastal regions. Diatom assemblages in this period suggest ice-free conditions and meltwater-stratified waters in the marine bays during summer, which is also reflected in high proportions of freshwater diatoms in the sediments. The diatom assemblage in the upper sediments of both cores indicates Neoglacial cooling from ~1000 cal yr BP, which again led to seasonally persistent sea-ice on the bays. The Holocene optimum and cooling trends in the Windmill Islands did not occur contemporaneously with other Antarctic coastal regions, showing that the here presented record reflects partly local environmental conditions rather than global climatic trends.
Resumo:
A linear, N-S-trending belt of elliptical, positive magnetic anomalies occurs in central Nordaustlandet, northeast Svalbard. They extend from the Caledonian and older complexes in the vicinity of Duvefjorden, southwards beneath the western margin of Austfonna and the offshore areas covered by Carboniferous and younger strata, to the vicinity of Edge¯ya. One of the strongest anomalies occurs in inner Duvefjorden where it coincides with a highly magnetic quartz monzonite-granite pluton at Djupkilsodden. U-Pb and Pb-Pb zircon dating of this post-tectonic pluton defines an age of c. 415 Ma, this being based on the Pb-Pb analyses of three specimens (Pb-Pb ages of 414±10 Ma, 411±10 Ma and 408±10 Ma) and a U-Pb discordia with an upper intercept at 417+18/-7 Ma. Neighbouring felsic plutons in central Nordaustlandet, including the Rijpfjorden and Winsnesbreen granites, lack magnetic signatures in their exposed parts, but have a similar Caledonian age. The central Nordaustlandet magnetic anomalies appear to be part of a circa 300 km long linear belt of late Silurian or early Devonian post-tectonic plutonism that characterizes the Caledonian basement of eastern Svalbard. Felsic intrusions of similar age further west in Spitsbergen are likewise both highly magnetic (Hornemantoppen batholith) and largely non-magnetic (Newtontoppen batholiths / Chydeniusbreen granitoid suite). They all appear to have been intruded at the end of the main period of Caledonian terrane assembly of the northwestern Barents Shelf.