497 resultados para Late Cretaceous-Paleogene reactivation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ODP Leg 119 drilled 11 sites on the Kerguelen Plateau (southern Indian Ocean) and Prydz Bay (East Antarctica). Upper Pliocene through Quaternary sediments were recovered at Site 736 on the northern Kerguelen Plateau; calcareous nannofossils occurred in only a few samples. Over 700 m of middle Eocene through Quaternary sediments was cored at Site 737 on the northern Kerguelen Plateau, and calcareous nannofossils are abundant in the middle Eocene through the middle Miocene sediments. Nearly 500 m of sediments ranging from the lower Turanian to the Quaternary was recovered at Site 738 on the southern Kerguelen Plateau; calcareous nannofossils are abundant from the Miocene downward. Calcareous nannofossils are also abundant in the upper Eocene through Miocene section from Site 744 on the southern Kerguelen Plateau. Except for Core 119-746A-13H, the Neogene sequences drilled at deep-water Sites 745 and 746 off the southern Kerguelen Plateau are devoid of calcareous nannofossils. Occurrences of calcareous nannofossils were generally rare and sporadic at Sites 739 and 742 in Prydz Bay and suggest that the diamictite sequences recovered is as old as middle Eocene-early Oligocene age. Other sites drilled in Prydz Bay (Sites 740, 741, and 743) did not yield calcareous nannofossils. Species diversity of calcareous nannofossils was low (about a dozen) in the southern Indian Ocean in the Late Cretaceous. High-latitude nanno floral characteristics are apparent after the Cretaceous/Tertiary boundary extinctions. Cold climatic conditions limited Oligocene calcareous nannofossil assemblages to fewer than a dozen species, and extinctions of species generally were not compensated by originations of new species. Only a few species of calcareous nannofossils were found in the Miocene sequences, in which Coccolithuspelagicus and one or two species of Reticulofenestra exhibit extreme (0%-100%) fluctuations in assemblage dominance, and these fluctuations may reflect rapid fluctuations in the surface-water temperatures. Further deterioration of climate in the late Neogene essentially excluded calcareous nannoplankton from the Southern Ocean. Significantly warmer water conditions during part of the early-middle Pleistocene were inferred by a few lower-middle Pleistocene calcareous nannofossil species found on the Kerguelen Plateau. The calcareous nannofossil zonation of Roth (1978 doi:10.2973/dsdp.proc.44.134.1978) can be applied to the Upper Cretaceous section recovered at Site 738, and the zonation of Okada and Bukry (1980 doi:10.1016/0377-8398(80)90016-X) can be applied without much difficulty to the Paleocene to middle Eocene sequences from the Kerguelen Plateau. However, some conventional upper Paleogene markers are not useful for southern high latitudes, whereas a few nonconventional species events are useful for subdividing the upper Paleogene sequences. The latter species events include the first occurrence (FO) of Reticulofenestra reticulata, the FO and last occurrence (LO) of Reticulofenestra oamaruensis, the LO of Isthmolithus recurvus, and the LO of Chiasmolithus altus. As the Neogene sequences from the southern Indian Ocean contain only a few long-ranging, cold-water species, or are devoid of coccoliths, calcareous nannofossil zonations remain virtually unworkable for the Neogene in the high-latitude southern Indian Ocean as in other sectors of the Southern Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrated Ocean Drilling Program (IODP) Expedition 302 (Arctic Coring Expedition, ACEX) recovered a unique sediment record from the central Arctic Ocean, revealing that this region underwent major environmental fluctuations since the Late Cretaceous. Major and trace element composition of 1,300 samples were determined using X-ray fluorescence (XRF). The results show significant compositional variability of the sediments with depth that can be attributed to changes in (a) provenance and pathways of detrital material, (b) paleoenvironmental conditions and depositional processes, and (c) diagenetic overprint of the primary record. In addition to existing lithological units, we introduce new geochemical units for a more process-related approach interpreting the ACEX record. In detail, via the geochemical signature of Siberian flood basalts we are able to reconstruct the discontinuous rifting and deepening of the central Lomonosov Ridge during the Paleogene, accompanied by changing current regimes and the onset of sea ice. Eocene biosiliceous sedimentation took place in a relatively shallow setting under predominantly anoxic bottom water conditions, causing a positive anoxia-productivity feedback, although water column stratification was repeatedly interrupted by ventilation events. Anoxic to sulfidic conditions were even more extreme after biosilica production ceased, and significant amounts of pyrite were deposited on the Lomonosov Ridge. Especially in organic matter-rich Paleogene deposits, diagenetic processes obscured the paleoenvironmental signals. Fundamental environmental changes occurred in the Middle Eocene, but geochemical and micropaleontological proxies point not to the identical sediment depth. After approximately 26 Ma of non-deposition or erosion, the Middle Miocene record shows the transition to dominantly oxic bottom water conditions, although suboxic diagenesis seemingly affected these deposits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Pacific plate has undergone a substantial northward displacement during the late Mesozoic and the Cainozoic. Here we give additional documentation for such motion based on palaeomagnetic measurements of a sequence of sedimentary and basalt samples collected from middle Oligocene to Aptian sections of Deep Sea Drilling Project (DSDP) site 289 (Andrews, 1975; 00° 29.92'S, 158° 30.69'E) drilled on the Ontong Java Plateau.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Except for a few discontinuous fragments of the Late Cretaceous/Early Cenozoic climate history and depositional environment, the paleoenvironmental evolution of the pre-Neogene central Arctic Ocean was virtually unknown prior to the IODP Expedition 302 (Arctic Ocean Coring Expedition - ACEX) drilling campaign on Lomonosov Ridge in 2004. Here we present detailed organic carbon (OC) records from the entire ca. 200 m thick Paleogene OC-rich section of the ACEX drill sites. These records indicate euxinic "Black Sea-type" conditions favorable for the preservation of labile aquatic (marine algae-type) OC occur throughout the upper part of the early Eocene and the middle Eocene, explained by salinity stratification due to freshwater discharge. The superimposed short-term ("Milankovitch-type") variability in amount and composition of OC is related to changes in primary production and terrigenous input. Prominent early Eocene events of algae-type OC preservation coincide with global d13C events such as the PETM and Elmo events. The Elmo d13C Event has been identified in the Arctic Ocean for the first time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediments recovered during Ocean Drilling Program (ODP) Leg 123 from the Argo Abyssal Plain (AAP) consist largely of turbidites derived from the adjacent Australian continental margin. The oldest abundant turbidites are Valanginian-Aptian in age and have a mixed (smarl) composition; they contain subequal amounts of calcareous and siliceous biogenic components, as well as clay and lesser quartz. Most are thin-bedded, fine sand- to mud-sized, and best described by Stow and Piper's model (1984) for fine-grained biogenic turbidites. Thicker (to 3 m), coarser-grained (medium-to-coarse sand-sized) turbidites fit Bouma's model (1962) for sandy turbidites; these generally are base-cut-out (BCDE, BDE) sequences, with B-division parallel lamination as the dominant structure. Parallel laminae most commonly concentrate quartz and/or calcispheres vs. lithic clasts or clay, but distinctive millimeter- to centimeter-thick, radiolarian-rich laminae occur in both fine- and coarse-grained Valanginian-Hauterivian turbidites. AAP turbidites were derived from relatively deep parts of the continental margin (outer shelf, slope, or rise) that lay below the photic zone, but above the calcite compensation depth (CCD). Biogenic components are largely pelagic (calcispheres, foraminifers, radiolarians, nannofossils); lesser benthic foraminifers are characteristic of deep-water (abyssal to bathyal) environments. Abundant nonbiogenic components are mostly clay and clay clasts; smectite is the dominant clay species, and indicates a volcanogenic provenance, most likely the Triassic-Jurassic volcanic suite exposed along the northern Exmouth Plateau. Lower Cretaceous smarl turbidites were generated during eustatic lowstands and may have reached the abyssal plain via Swan Canyon, a submarine canyon thought to have formed during the Late Jurassic. In contrast to younger AAP turbidites, however, Lower Cretaceous turbidites are relatively fine-grained and do not contain notably older reworked fossils. Early in its history, the northwest Australian margin provided mainly contemporaneous slope sediment to the AAP; marginal basins adjacent to the continent trapped most terrigenous detritus, and pronounced canyon incisement did not occur until Late Cretaceous and, especially, Cenozoic time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamics of the Pacific Plate is recorded in the systematic variation of location and the 40Ar-39Ar age of seamounts in the Western Pacific from 120 to 65 Ma ago. The seamounts are grouped into three linear zones as long as 5000 km. The seamounts become younger in the southeastern direction along the strike of these zones. Correlation between age and location of seamounts allows to divide the history of their formation into three stages. Rate of seamount growth was relatively low (2-4 cm/yr) during the first and the third stages within intervals of 120-90 and 85-65 Ma, whereas during the second stage (90-85 Ma), the seamounts were growing very fast (80-100 cm/yr). In the midst of this stage, at ~87 Ma ago, magmatic activity increased abruptly. Dynamics of seamount building is in good agreement with (1) pulses in development of the Ontong Java, Manihiki, and Caribbean-Colombian oceanic plateaus; (2) age of spreading acceleration in the mid-Cretaceous; and (3) a short period when the Izanagi Plate ceased to exist and the Kula Plate was formed. Variation in seamounts' age and location are in consistence with the hypothesis of diffuse extension of the Pacific Plate in course of its motion with formation of impaired zones of decompression melting. Direction of extension (325°-340° NW) calculated from the strike of seamount zones is consistent with the path of the Pacific Plate (330° NW) in the Late Cretaceous. Immense perioceanic volcanic belts were formed at that time along the margin of the Asian continent. The Okhotsk-Chukchi Peninsula Belt extends at a right angle to the compression vector. Three stages of this belt's evolution are synchronous with the stages of seamount formation in the Pacific Plate. Delay in origination of the East Sikhote-Alin Volcanic Belt and its different orientation were caused by counterclockwise rotation of the vector of convergence of oceanic and continental plates in the mid-Cretaceous. At the same time, i.e. 95-85 Ma ago, volcanic activity embraced the entire continental margin and tin granites were emplaced everywhere in the Eastern Asia. This short episode (90+/-5 Ma) corresponds to the mid-Cretaceous maximum of compression of the continental margin, and its age fits well a culmination in extension of the Pacific Plate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lengthy warm, stable climate of the Cretaceous terminated in the Campanian with a cooling trend, interrupted in the early and latest Maastrichtian by two events of global warming, at ~70-68 Ma and at 65.78-65.57 Ma. These climatic oscillations had a profound effect on pelagic ecosystems, especially on planktic foraminiferal populations. Here we compare biotic responses in the tropical-subtropical (Tethyan) open ocean and mesotrophic (Zin Valley, Israel) and oligotrophic (Tunisia) slopes, which correlate directly with global warming and cooling. The two warming events coincide with blooms of Guembelitria, an extreme opportunist genus best known as the main survivor of the Cretaceous-Paleogene (K-Pg) catastrophe. In the Maastrichtian, Guembelitria bloomed in the uppermost surface water above shelf and slope environments but failed to reach the open ocean as it did at K-Pg. The coldest interval of the late Maastrichtian (~68-65.78 Ma) is marked by an acme of the otherwise rare species Gansserina gansseri, a deep-dwelling keeled globotruncanid. The G. gansseri acme event can be traced from the deep ocean even onto the Tethyan slope, marking copious production and circulation of cold intermediate water. This acme is abruptly terminated by extinction of the species, a dramatic reversal attributed to a short-term global warming episode. This extinction corresponds precisely with the second bloom of Guembelitria that began ~300 kyr prior to the K-Pg event. The antithetical relationship between blooming of Guembelitria and the G. gansseri acme reflects planktic foraminiferal sensitivity to warm-cool-warm-cool climatic oscillations marking the end of the Cretaceous.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new planktic foraminiferal zonal scheme is presented for subdivision of Upper Cretaceous pelagic carbonate sequences in the circum-Antarctic region. Definition of the zones and subzones is based study of foraminifera from 13 deep-sea sections that were poleward of 50 °S paleolatitude and within the Austral Biogeographic Realm during Late Cretaceous time. The proposed biostratigraphic scheme includes seven Upper Cretaceous zones, with an average stratigraphic resolution of 4.4 m.y., and six subzones, which are all within the Maastrichtian Stage, with an average stratigraphic resolution of 1.4 m.y. The considerably higher resolution in the Maastrichtian Stage is a result of good foraminiferal preservation, availability of high quality magnetostratigraphic sections, and complete composite stratigraphic recovery in the Atlantic and Indian Ocean sectors of the Antarctic Ocean. Diminished resolution in the pre-Maastrichtian sediments of southern high latitude sections results from: (1) incomplete recovery of the middle Campanian, lower Santonian and most of the Cenomanian-lower Coniacian intervals, (2) presence of local and regional hiatuses, (3) paleobathymetric shallowing with increasing age at some sites, resulting in impoverished older planktic assemblages, and (4) poorer preservation with increasing burial depth. Cross-latitude correlation of the Campanian and older austral sequences may be improved with future drilling by recovery of sections that span existing stratigraphic gaps. Correlation of high latitude bioevents with chemostratigraphic events and their intercalibration with the magnetostratigraphy and the Geomagnetic Polarity Time Scale are needed for better chronostratigraphic resolution in existing high latitude sequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The full suite of magnetic polarity chrons from Subchron M''-2r'' (early Albian) through Chron C13r (latest Eocene) were resolved at one or more Ocean Drilling Program sites on the Blake Nose salient of the Florida continental margin. These sediments preserve diverse assemblages of calcareous and siliceous microfossils; therefore, the composite suite provides a reference section for high-resolution correlation of biostratigraphic datums to magnetic polarity chrons of the Late Cretaceous and Paleogene. Relative condensation or absence of polarity zones at different sites along the transect enhance the recognition and dating of depositional sequences and unconformities within the margin succession. A stable paleolatitude of ~25°N was maintained from the late Aptian through Eocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Depth habitats of 56 late Cretaceous planktonic foraminiferal species from cool and warm climate modes were determined based on stable isotope analyses of deep-sea samples from the equatorial Pacific DSDP Sites 577A and 463, and South Atlantic DSDP Site 525A. The following conclusions can be reached: Planoglobulina multicamerata (De Klasz) and Heterohelix rajagopalani (Govindan) occupied the deepest plankton habitats, followed by Abathomphalus mayaroensis (Bolli), Globotruncanella havanensis (Voorwijk), Gublerina cuvillieri Kikoine, and Laeviheterohelix glabrans (Cushman) also at subthermocline depth. Most keeled globotruncanids, and possibly Globigerinelliodes and Racemiguembelina species, lived at or within the thermocline layer. Heterohelix globulosa (Ehrenberg) and Rugoglobigerina, Pseudotextularia and Planoglobulina occupied the subsurface depth of the mixed layer, and Pseudoguembelina species inhabited the surface mixed layer. However, depth ranking of some species varied depending on warm or cool climate modes, and late Campanian or Maastrichtian age. For example, most keeled globotruncanids occupied similar shallow subsurface habitats as Rugoglobigerina during the warm late Campanian, but occupied the deeper thermocline layer during cool climatic intervals. Two distinct types of "vital effect" mechanisms reflecting photosymbiosis and respiration effects can be recognized by the exceptional delta13C signals of some species. (1) Photosymbiosis is implied by the repetitive pattern of relatively enriched delta13C values of Racemiguembelina (strongest), Planoglobulina, Rosita and Rugoglobigerina species, Pseudoguembelina excolata (weakest). (2) Enriched respiration 12C products are recognized in A. mayaroensis, Gublerina acuta De Klasz, and Heterohelix planata (Cushman). Isotopic trends between samples suggest that photosymbiotic activities varied between localities or during different climate modes, and may have ceased under certain environmental conditions. The appearance of most photosymbiotic species in the late Maastrichtian suggests oligotrophic conditions associated with increased water-mass stratification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three uppermost Cretaceous through basal Paleocene stratigraphic sequences are examined for planktic foraminiferal assemblage stability and temporal succession patterns. These sequences are at mid-latitude South Atlantic DSDP Site 528, then-equatorial Pacific DSDP Site 577 and the Tethyan shelf Ben Gurion section of the Negev, Israel. In order to better estimate biogeographic patterns and habitat preferences, the results of these analyses are compared to previous Cretaceous biogeographic studies and to previous analyses of Cretaceous-Tertiary (K/T) boundary shelf and epicontinental sections. Results indicate that immediately following the K/T boundary, the examined epicontinental and open-ocean sites were exploited primarily by previously epicontinental planktic foraminiferal assemblages. This pattern of K/T boundary assemblage dominance suggests the geologically instantaneous break-down of Late Cretaceous epicontinental and open-ocean biogeographic provincialization. This shift in open-ocean foraminiferal assemblages is not consistent with models of nonselective K/T boundary extinctions, but is consistent with models of extinction resistence and offshore expansion of nearshore taxa. The re-establishment of stable biogeographic differences between open-ocean and epicontinental planktic foraminiferal assemblages occurs by the basal Parvularugoglobigerina eugubina Zone. At open-ocean sites 528 and 577 and the outershelf Ben Gurion section, P0 and P. eugubina Zone faunal records are marked by a pronounced alternation between Paleocene biserial- and non-biserial-dominated assemblages, This alternation appears strongly damped at shelf and epicontinental sections previously examined. The first appearance and peak magnitude of abundant earliest Paleocene trochospiral forms (Parvularugoglobigerina, Eoglobigerina, Morozovella, Globoconusa) also vary from site to site and may depend closely on levels of primary carbonate productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inoceramus is an epibenthic bivalve which lived in a wide variety of paleoenvironments encompassing a broad range of paleodepths. A survey of all Cretaceous sediments from Deep Sea Drilling Project legs 1-69 and 75 revealed over 500 Inoceramus specimens at twenty sites. Of these, 47 well-preserved Late Cretaceous specimens from the South Atlantic, Pacific and Indian Oceans were analyzed for oxygen and carbon isotopes. The specimens exhibit small internal isotopic variability and oxygen isotopic paleotemperatures that are consistent with a deep-sea habitat. Paleotemperatures ranging from 5 to 16°C show that Late Cretaceous oceans were significantly warmer than the present oceans. The data suggest that deep water was formed both by cooling at high latitudes and by evaporation in the subtropics.