87 resultados para LI-1-XHXIO3
Resumo:
On the basis of aerial photographs of sea ice floes in the marginal ice zone (MIZ) of Prydz Bay acquired from December 2004 to February 2005 during the 21st Chinese National Antarctic Research Expedition, image processing techniques are employed to extract some geometric parameters of floes from two merged transects covering the whole MIZ. Variations of these parameters with the distance into the MIZ are then obtained. Different parameters of floe size, namely area, perimeter, and mean caliper diameter (MCD), follow three similar stages of increasing, flat and increasing again, with distance from the open ocean. Floe shape parameters (roundness and the ratio of perimeter to MCD), however, have less significant variations than that of floe size. Then, to modify the deviation of the cumulative floe size distribution from the ideal power law, an upper truncated power-law function and a Weibull function are used, and four calculated parameters of the above functions are found to be important descriptors of the evolution of floe size distribution in the MIZ. Among them, Lr of the upper truncated power-law function indicates the upper limit of floe size and roughly equals the maximum floe size in each square sample area. L0 in the Weibull distribution shows an increasing proportion of larger floes in squares farther from the open ocean and roughly equals the mean floe size. D in the upper truncated power-law function is closely associated with the degree of confinement during ice breakup. Its decrease with the distance into MIZ indicates the weakening of confinement conditions on floes owing to wave attenuation. The gamma of the Weibull distribution characterizes the degree of homogeneity in a data set. It also decreases with distance into MIZ, implying that floe size distributes increase in range. Finally, a statistical test on floe size is performed to divide the whole MIZ into three distinct zones made up of floes of quite different characteristics. This zonal structure of floe size also agrees well with the trends of floe shape and floe size distribution, and is believed to be a straightforward result of wave-ice interaction in the MIZ.
Resumo:
The Barkol Lake, as a closed inland lake, is located at the northeast Xinjiang in northwest China. A combination of geochemical indicators including d18O and d13C of carbonate, TOC, carbonate contents, as well as grain size proxies and magnetic susceptibility of sediments obtained from a newly recovered section at this lake, provides a high-resolution history of climatic change in the past 9400 years. Multi-indicators reflect that Holocene climatic change in the study region generally follows the Westerly Wind pattern of Holocene, and three climatic periods can be identified. Between 9400 and 7500 cal a B.P., climate was characterized by relatively drier and colder condition. From 7500 to 5800 cal a B.P., a relatively warmer and moister climate prevailed, but between 5800 and 3500 cal a B.P., climate shifted towards warmer and drier conditions. A relatively colder and wetter climate prevailed during 3500~1000 cal a B.P., then it changed towards cold and dry between 1000 and 500 cal a B.P.; after 500 cal a B.P., climate changed towards warm and dry conditions again. This study reflects that during the Middle Holocene (from ca 7000 to 3500 cal a B.P.), variations of carbonate d18O of sediments from several lakes in the northern Xinjiang were synchronous with that of Qinghai Lake, where was strongly influenced by the South Asian monsoon; however, after 3500 cal a B.P. this consistency was interrupted, possibly resulting from a re-domination of the Westerly Wind and the retreat of South Asian monsoon in the northern Xinjiang.
Resumo:
The biogenic-related elements Ca, Sr, Ba, P, Cd, scavenged Al, and Ti were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) for Core NS93-5 from the west slope of the South China Sea. Terrestrial input as estimated from the accumulation of Ti was higher during glacials than during interglacials. Carbonate accumulation rates are inversely related to those of terrestrial input, suggesting higher production of calcareous phytoplankton during interglacials. The accumulation patterns of authigenic Sr, Ba, P, and Cd match that of carbonate, further indicating higher calcareous phytoplankton production during interglacials. Scavenged Al and excess SiO2, which is related to biogenic opal, exhibit higher accumulation rates during glacials and correspond with changes in terrestrial input. This indicates that terrestrial input driven is important to siliceous phytoplankton production but not for calcareous phytoplankton production. As calcareous phytoplankton is the dominant component of the biogenic sediments in the South China Sea, particularly during interglacials, previous inference of higher productivity in the South China Sea during glacials based on only the biogenic opal proxy needs to be reconsidered.
Resumo:
The geological overview map was compiled from 15 geological maps (1 : 25,000) and is based on Jacobs et al. 1996. The topographic basemaps were adapted from unpublished 1:250,000 provisional topographic maps, Institut f. Angewandte Geodäsie, Frankfurt, 1983. Part of the contour lines are from Radarsat (Liu et al. 2001).
Resumo:
Changes in intermediate and deep ocean circulation likely played a significant role in global carbon cycling and meridional heat/moisture transport during the middle Miocene climate transition (~14 Ma). High-resolution middle Miocene (16-13 Ma) benthic foraminifer stable isotope records from the South China Sea reveal a reorganization of regional bottom waters, which preceded the globally recognized middle Miocene ~1 per mil d18O increase (13.8 Ma) by 100,000 years. An observed reversal of the benthic foraminifera d13C gradient between ODP Sites 1146 (2092 m) and 1148 (3294 m; 13.9-13.5 Ma) is interpreted to reflect an increase in the southward flux of low d13C deep (> 2000 m) Pacific Ocean waters (Flower and Kennett, 1993, doi:10.1029/93PA02196; Shevenell and Kennett, 2004). Large-scale changes in Pacific intermediate and deep ocean circulation, coupled with enhanced global carbon cycling at the end of the Monterey Carbon Isotope excursion, likely acted as internal feedbacks to the Earth's climate system. These feedbacks reduced the sensitivity of Antarctica to lower latitude-derived heat/moisture and facilitated the transition of the Earth's climate system to a new, relatively stable glacial state.
Resumo:
Concentrations of minor and trace elements (Li, Rb, Sr, Ba, Fe, and Mn) in interstitial water (IW) were found in samples collected during Ocean Drilling Program (ODP) Leg 166 from Sites 1005, 1006, and 1007 on the western flank of the Great Bahama Bank (GBB). Concentrations of Li range from near-seawater values immediately below the sediment/water interface to a maximum of 250 µM deep in Site 1007. Concentrations determined during shore-based studies are substantially lower than the shipboard data presented in the Leg 166 Initial Reports volume (range of 28-439 µM) because of broad-band interferences from high dissolved Sr concentrations in the shipboard analyses. Rubidium concentrations of 1.3-1.7 µM were measured in IW from Site 1006 when salinity was less than 40 psu. A maximum of 2.5 µM is reached downhole at a salinity of 50 psu. Shipboard and shore-based concentrations of Sr2+ are in excellent agreement and vary from 0.15 mM near the sediment water interface to 6.8 mM at depth. The latter represent the highest dissolved Sr2+ concentrations observed to date in sediments cored during the Deep Sea Drilling Project (DSDP) or ODP. Concentrations of Ba2+ span three orders of magnitude (0.1-227µM). Concentrations of Fe (<0.1-14 µM) and Mn (0.1-2 µM) exhibit substantially greater fluctuations than other constituents. The concentrations of minor and trace metals in pore fluids from the GBB transect sites are mediated principally by changes in pore-water properties resulting from early diagenesis of carbonates associated with microbial degradation of organic matter, and by the abundance of detrital materials that serve as a source of these elements. Downcore variations in the abundance of detrital matter reflect differences in carbonate production during various sea-level stands and are more evident at the more proximal Site 1005 than at the more pelagic Site 1006. The more continuous delivery of detrital matter deep in Site 1007 and throughout all of Site 1006 is reflected in a greater propensity to provide trace elements to solution. Concentrations of dissolved Li+ derive principally from (1) release during dissolution of biogenic carbonates and subsequent exclusion during recrystallization and (2) release from partial dissolution of Li-bearing detrital phases, especially ion-exchange reactions with clay minerals. A third but potentially less important source of Li+ is a high-salinity brine hypothesized to exist in Jurassic age (unsampled) sediments underlying those sampled during Leg 166. The source of dissolved Sr2+ is almost exclusively biogenic carbonate, particularly aragonite. Concentrations of dissolved Sr2+ and Ba2+ are mediated by the solubility of their sulfates. Barite and detrital minerals appear to be the more important source of dissolved Ba2+. Concentrations of Fe and Mn2+ in anoxic pore fluids are mediated by the relative insolubility of pyrite and incorporation into diagenetic carbonates. The principal sources of these elements are easily reduced Fe-Mn-rich phases including Fe-rich clays found in lateritic soils and aoelian dust.
Resumo:
The chemical index of alteration (CIA) and elemental ratios that are sensitive to chemical weathering, such as Ca/Ti, Na/Ti, Al/Ti, Al/Na, Al/K, and La/Sm, were analyzed for detrital sediments at Ocean Drilling Program Site 1148 from the northern South China Sea to reveal information of chemical weathering in the source regions during the early Miocene. High CIA values of ~80, coupled with high Al/Ti and Al/Na and low Na/Ti and Ca/Ti, are observed for the sediments at ~23 Ma, indicating a high chemical weathering intensity in the north source region, i.e., south China. This was followed by gradual decreases in Al/Ti, Al/Na, La/Sm, and Al/K ratios, as well as the CIA values, and increases in Ca/Ti and Na/Ti ratios. These records together with other paleoclimate proxies, such as black carbon d13C and benthic foraminifer d18O, give reliable information on the climate changes in south China. Our results show that the climate in south China was warm and humid in the early Miocene (~23 Ma) according to the chemical weathering records. The humidity in south China decreased from the early Miocene to Present with several fluctuations centering at approximately 15.7 Ma, 8.4 Ma, and 2.5 Ma, coincident with the global cooling since the middle Miocene. These climate changes implied that the summer east Asian monsoon has dramatically affected south China in the early Miocene, whereas the influence of the summer monsoon on this region has decreased continuously since that time, probably because of the intensification of the winter monsoon. Such an evolution for the east Asian monsoon is different from that for the Indian monsoon.