171 resultados para Institute of Pacific Relations.
Resumo:
The Mesocena elliptica Ehr. zone in deep-sea sediments of the Pacific Ocean is characterized by a short vertical range at the base of the Pleistocene section. Depending on sedimentation rate this zone lies at various depths below the ocean bottom. M. elliptica is unknown in recent oceanic plankton. In fossil state known species indicate that sediments containing them are of Oligocene-Miocene age. New data obtained in early 1960's show that within a short interval, evidently in Early Pleistocene, M. elliptica was abundant in plankton, primarily in tropical regions. Correlation of paleomagnetic data with results of diatom analysis shows that the Mesocena elliptica zone always lies above the Pliocene-Pleistocene boundary, and that maximum contents of M. elliptica coincide with the Jaramillo event (0.85-0.95 million years ago).
Resumo:
Concentrations and compositions of rare earth elements (REE) in three micronodule fractions (50-250, 250-500, and >500 ?m), coexisting macronodules, and host sediments were studied. Samples were collected at three sites (Guatemala Basin, Peru Basin, and northern equatorial Pacific) located in elevated bioproductivity zones of surface waters. Influence of micronodule size is dominant for REE compositions and subordinate for REE concentrations. For example, Ce concentration inversely correlates with micronodule size and drops to the lowest value in macronodules and host sediments. Decrease of Ce concentration is generally accompanied by Mn/Fe increase in micro- and macronodules. Hence, the role of diagenetic source of material directly correlates with micronodule sizes. Contribution of the diagenetic source is maximal for macronodules. REE composition distinctions for micronodules and macronodules can be attributed to variations of hydrogenic iron oxyhydroxides and diagenetic (hydrothermal) iron hydroxophosphates that are the major REE carriers in ferromanganese ore deposits. Relationship and general trend in chemistry of coexisting macronodules suggest that they can represent products of the initial stage of nodule formation.
Resumo:
The Mesocena elliptica Ehr. zone in deep-sea sediments of the Pacific Ocean is characterized by a short vertical range at the base of the Pleistocene section. Depending on sedimentation rate this zone lies at various depths below the ocean bottom. M. elliptica is unknown in recent oceanic plankton. In fossil state known species indicate that sediments containing them are of Oligocene-Miocene age. New data obtained in early 1960's show that within a short interval, evidently in Early Pleistocene, M. elliptica was abundant in plankton, primarily in tropical regions. Correlation of paleomagnetic data with results of diatom analysis shows that the Mesocena elliptica zone always lies above the Pliocene-Pleistocene boundary, and that maximum contents of M. elliptica coincide with the Jaramillo event (0.85-0.95 million years ago).
(Table 1-4) Chemical composition of ferromanganese nodules from the South Basin of the Pacific Ocean
Resumo:
To check on the assumption that metabolic products of planktonic organisms can affect the coefficient of dynamic viscosity of seawater, viscosity was measured in water samples taken from depths of 0 to 1843 m, west of the Hawaiian Islands. Obtained results showed that plankton has no effect on viscosity of water in regions of low productivity and that viscosity can be determined with high degree of accuracy from the appropriate tables.
Resumo:
Bioaccumulation of trace metals in carbonate shells of mussels and clams was investigated at seven hydrothermal vent fields of the Mid-Atlantic Ridge (Menez Gwen, Snake Pit, Rainbow, and Broken Spur) and the Eastern Pacific (9°N and 21°N at the East Pacific Rise and the southern trough of Guaymas Basin, Gulf of California). Mineralogical analysis showed that carbonate skeletons of mytilid mussel Bathymodiolus sp. and vesicomyid clam Calyptogena m. are composed mainly of calcite and aragonite, respectively. The first data were obtained for contents of a variety of chemical elements in bivalve carbonate shells from various hydrothermal vent sites. Analyses of chemical compositions (including Fe, Mn, Zn, Cu, Cd, Pb, Ag, Ni, Cr, Co, As, Se, Sb, and Hg) of 35 shell samples and 14 water samples from mollusk biotopes revealed influences of environmental conditions and some biological parameters on bioaccumulation of metals. Bivalve shells from hydrothermal fields with black smokers are enriched in Fe and Mn by factor of 20-30 relative to the same species from the Menez Gwen low-temperature vent site. It was shown that essential elements (Fe, Mn, Ni, and Cu) more actively accumulated during early ontogeny of the shells. High enrichment factors of most metals (n x 100 - n x 10000) indicate efficient accumulation function of bivalve carbonate shells. Passive metal accumulation owing to adsorption on shell surfaces was estimated to be no higher than 50% of total amount and varied from 14% for Fe to 46% for Mn.
Resumo:
Mineral and chemical compositions, as well as conditions of formation of clay sediments in major structural elements of the Pacific Ocean floor with different ages are under consideration in the monograph. Depending on evolution of the region two ways of clay sediment formation are identified: terrigenous and authigenic. It is shown that terrigenous clay sediments predominate in marginal parts of the Pacific Ocean. Authigenic mineral formation occurring in the basal part of the sedimentary cover primarily results from removal of material from underlying basalts. This material is released during secondary alteration of the basalts due to their interaction with sea water, as well as with deep solutions.
Resumo:
The monogragh contains results of mineralogicai and geochemical studies of Mesozoic and Cenozoic deposits from the Pacific Ocean collected during Deep Sea Drilling Project. Special attention is paid on the aspects of geochemical history of post-Jurassic sedimentation in the central part of the Northwest Pacific, detailed characteristics of the main stages of sedimentary evolution are given: Early Cretaceons (protooceanic), Late Cretaceons (transitional) and Cenozoic (oceanic). Results of mineralogical and geochemical studies of hydrothermal deposits from the Galapagos Rift are given as well.
Resumo:
Quantitative analysis of vertical distribution of copepod families revealed a pattern of variation with depth (from the surface to the greatest ocean depths) in the trophic structure of this taxocenosis in the pelagic Pacific.