156 resultados para IRON(III) HYDROXIDE PARTICLES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report includes the petrographic description and reviews the distribution of lithic clasts in sediments drilled during Leg 180 in the Woodlark Basin (southwest Pacific). The lithic clasts include (1) metamorphic rocks; (2) granites; (3) serpentinites, gabbros, dolerites, and basalts likely derived from the Papuan ophiolite belt; (4) rare alkaline volcanites reworked in middle Miocene sediments; (5) medium- to high-K calc-alkaline island arc volcanites, in part as reworked clasts, and explosive products deposited by fallout or reworked by turbiditic currents; and (6) rare sedimentary fragments. At the footwall sites the clast assemblage evidences the association of dolerites and evolved gabbroic rocks; the serpentinite likely pertaining to the same ophiolitic complex are likely derived from onland outcrops and transported by means of turbidity currents. On the whole, extensional tectonics active at least since the middle Pliocene can be inferred. The calc-alkaline volcanism is in continuity with the arc-related products from the Papua Peninsula and D'Entrecasteaux Islands and with the latest volcanics of the Miocene Trobrian arc. However, the medium- to high-K and shoshonitic products do not display a significant temporal evolution within the stratigraphic setting. Lava clasts, volcanogenic grains, and glass shards are associated with turbidity currents, whereas in the Pliocene of northern margin the increasing frequency of tephra (glass shards and vesicular silicic fragments) suggests more explosive activity and increasing contribution to the sediments from aerial fallout materials. Evidence of localized alkalic volcanism of presumable early to middle Miocene age is a new finding. It could represent a rift phase earlier than or coeval to the first opening of the Woodlark Basin or, less probably, could derive from depositional trajectories diverted from an adjacent basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The AND-1B drill core recovered a 13.57 million year Miocene through Pleistocene record from beneath the McMurdo Ice Shelf in Antarctica (77.9°S, 167.1°E). Varying sedimentary facies in the 1285 m core indicate glacial-interglacial cyclicity with the proximity of ice at the site ranging from grounding of ice in 917 m of water to ice free marine conditions. Broader interpretation of climatic conditions of the wider Ross Sea Embayment is deduced from provenance studies. Here we present an analysis of the iron oxide assemblages in the AND-1B core and interpret their variability with respect to wider paleoclimatic conditions. The core is naturally divided into an upper and lower succession by an expanded 170 m thick volcanic interval between 590 and 760 m. Above 590 m the Plio-Pleistocene glacial cycles are diatom rich and below 760 m late Miocene glacial cycles are terrigenous. Electron microscopy and rock magnetic parameters confirm the subdivision with biogenic silica diluting the terrigenous input (fine pseudo-single domain and stable single domain titanomagnetite from the McMurdo Volcanic Group with a variety of textures and compositions) above 590 m. Below 760 m, the Miocene section consists of coarse-grained ilmenite and multidomain magnetite derived from Transantarctic Mountain lithologies. This may reflect ice flow patterns and the absence of McMurdo Volcanic Group volcanic centers or indicate that volcanic centers had not yet grown to a significant size. The combined rock magnetic and electron microscopy signatures of magnetic minerals serve as provenance tracers in both ice proximal and distal sedimentary units, aiding in the study of ice sheet extent and dynamics, and the identification of ice rafted debris sources and dispersal patterns in the Ross Sea sector of Antarctica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cenozoic volcanic activity on Iceland has been recorded in North Atlantic sediments drilled during several Ocean Drilling Program (ODP)/Deep Sea Drilling Project legs (Legs 104, 151, 152, 162, and 163). Leg 162 (North Atlantic-Arctic Gateways II) recovered ash layers at Sites 982, 985, and 907 (Jansen, Raymo, Blum, et al., 1996, doi:10.2973/odp.proc.ir.162.1996). The revisited Site 907 was first drilled during Leg 151, and the ash from this site has been described in detail by Lacasse et al. (1996, doi:10.2973/odp.proc.sr.151.122.1996) and Werner et al. (1996, doi:10.2973/odp.proc.sr.151.123.1996). Site 982 is located within the Hatton-Rockall Basin on the Rockall Plateau, which is situated west of the British Isles. Site 985 is located northeast of Iceland at the foot of the eastern slope of the Iceland Plateau, adjacent to the Norwegian Basin. Here we report chemical analyses of Neogene tephra layers from Holes 982A, 983B, 982C, 985A, and 985B. The sedimentary sequence at Site 982 spans the lower Miocene-Holocene; Site 985 recovered sediments spanning the upper Oligocene-Holocene. Twenty-two distinct ash layers and ash-bearing sediments were sampled in Holes 982A-982C (Cores 162-982A-16H through 24H, 162-982B-14H through 56X, and 162-982C-15H through 27H), and 59 ash layers were sampled in Holes 985A and 985B (Cores 162-985A-11H through 59X, and 162-985B-11H through 14H). Almost 50% of the sampled ash is strongly altered (predominantly from Site 985). A cluster of altered thin layers in the lower Pliocene of Site 985 (top of Unit III) is remarkable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An upper Aptian to middle Albian series of volcaniclastic rocks more than 300 m thick was drilled at Site 585 in the East Mariana Basin. On the basis of textural and compositional (bulk-rock chemistry, primary and secondary mineral phases) evidence, the volcaniclastic unit is subdivided into a lower (below 830 m sub-bottom) and an upper (about 670-760 m) sequence; the boundary in the interval between is uncertain owing to lack of samples. The rocks are dominantly former vitric basaltic tuffs and minor lapillistones with lesser amounts of crystals and basaltic lithic clasts. They are mixed with shallow-water carbonate debris (ooids, skeletal debris), and were transported by mass flows to their site of deposition. The lower sequence is mostly plagioclase- and olivine-phyric with lesser amounts of Ti-poor clinopyroxene. Mineralogical and bulk-rock chemical data indicate a tholeiitic composition slightly more enriched than N-MORB (normal mid-ocean ridge basalt). Transport was by debris flows from shallow-water sites, as indicated by admixed ooids. Volcanogenic particles are chiefly moderately vesicular to nonvesicular blocky shards (former sideromelane) and less angular tachylite with quench plagioclase and pyroxene, indicating generation of volcanic clasts predominantly by spalling and breakage of submarine pillow and/or sheet-flow lavas. The upper sequence is mainly clinopyroxene- and olivine-phyric with minor plagioclase. The more Ti-rich clinopyroxene and the bulk-rock analyses show that the moderately alkali basaltic composition throughout is more mafic than the basal tholeiitic sequence. Transport was by turbidity currents. Rounded epiclasts of crystalline basalts are more common than in the lower sequence, and, together with the occurrence of oxidized olivine pseudomorphs and vesicular tachylite, are taken as evidence of derivation from eroded subaerially exposed volcanics. Former sideromelane shards are more vesicular than in the lower sequence; vesicularity exceeds 60 vol.% in some clasts. The dominant clastic process is interpreted to be by shallow-water explosive eruptions. All rocks have undergone low-temperature alteration; the dominant secondary phases are "palagonite," chlorite/smectite mixed minerals, analcite, and chabazite. Smectite, chlorite, and natrolite occur in minor amounts. Phillipsite is recognized as an early alteration product, now replaced by other zeolites. During alteration, the rocks have lost up to 50% of their Ca, compared with a fresh shard and fresh glass inclusions in primary minerals, but have gained much less K, Rb, and Ba than expected, indicating rapid deposition prior to significant seafloor weathering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary and secondary mineral phases from Holes 1268A (11 samples), 1272A (9 samples), and 1274A (12 samples) were analyzed by electron microprobe in Bonn and Cologne (Germany). Bulk rock powders of these samples were also analyzed geochemically, including major and trace elements (Paulick et al., 2006, doi:10.1016/j.chemgeo.2006.04.011). Ocean Drilling Program (ODP) Leg 209 Holes 1268A, 1272A, and 1274A differ remarkably in alteration intensity and mineralogy, and details regarding their lithologic characteristics are presented in Bach et al. (2004, doi:10.1029/2004GC000744) and Shipboard Scientific Party (2004, doi:10.2973/odp.proc.ir.209.101.2004). Because of the least altered character of peridotite in Hole 1274A, abundant clinopyroxene, orthopyroxene, olivine, and spinel were analyzed at this site. In Hole 1272A, primary silicates are rare and analyses were restricted to some samples that contain traces of olivine and orthopyroxene. Because of the intensity of alteration, Hole 1268A is devoid of primary phases except spinel. Commonly, alteration is pseudomorphic and serpentinization of olivine and orthopyroxene can be distinguished. Accordingly, compositional variations of the alteration minerals with regard to the precursor minerals are one of the issues investigated in this data report.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two ash horizons have been identified in Hole 549, one in the upper Paleocene (basal NP9), the other in the upper Eocene (NP18); both are mixed lithic crystal tuffs of rhyolitic composition. These tuffs are absent in Hole 550 owing to unconformities, but the basal Eocene (NP10) of Hole 550 includes a series of over 50 thin bentonite layers. Intermediate plagioclase associated with these bentonites indicates that the original ash was of basaltic to andesitic composition. The bentonites are absent in Hole 549, probably because of an unconformity, but they have been identified in Hole 401 (Leg 48, Bay of Biscay). Two of the pyroclastic phases can be matched with phases previously reported for the North Sea Basin. The bentonites of Site 550 are probably equivalent to the widespread "ash series" of northwestern Europe, which may therefore be regarded as being lower Eocene in terms of Martini's calcareous nannoplankton zonation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a detailed study of the co-diagenesis of Fe and P in hydrothermal plume fallout sediments from ~19°S on the southern East Pacific Rise. Three distal sediment cores from 340-1130 km from the ridge crest, collected during DSDP Leg 92, were analysed for solid phase Fe and P associations using sequential chemical extraction techniques. The sediments at all sites are enriched in hydrothermal Fe (oxyhydr)oxides, but during diagenesis a large proportion of the primary ferrihydrite precipitates are transformed to the more stable mineral form of goethite and to a lesser extent to clay minerals, resulting in the release to solution of scavenged P. However, a significant proportion of this P is retained within the sediment, by incorporation into secondary goethite, by precipitation as authigenic apatite, and by readsorption to Fe (oxyhydr)oxides. Molar P/Fe ratios for these sediments are significantly lower than those measured in plume particles from more northern localities along the southern East Pacific Rise, and show a distinct downcore decrease to a depth of ~12 m. Molar P/Fe ratios are then relatively constant to a depth of ~35 m. The Fe and P speciation data indicate that diagenetic modification of the sediments is largely complete by a depth of 2.5 m, and thus depth trends in molar P/Fe ratios can not solely be explained by losses of P from the sediment by diffusion to the overlying water column during early diagenesis. Instead, these sediments are likely recording changes in dissolved P concentrations off the SEPR, possibly as a result of redistribution of nutrients in response to changes in oceanic circulation over the last 10 million years. Furthermore, the relatively low molar P/Fe ratios observed throughout these sediments are not necessarily solely due to losses of scavenged P by diffusion to the overlying water column during diagenesis, but may also reflect post-depositional oxidation of pyrite originating from the volatile-rich vents of the southern East Pacific Rise. This study suggests that the molar P/Fe ratio of oxic Fe-rich sediments may serve as a proxy of relative changes in paleoseawater phosphate concentrations, particularly if Fe sulfide minerals are not an important component during transport and deposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Slices of polycyclic metasediments (marbles and meta-cherts) are tectonically amalgamated with the polydeformed basement of the Dent Blanche tectonic system along a major Alpine shear zone in the Western Alps (Becca di Salé area, Valtournenche Valley). A combination of techniques (structural analysis at various scales, metamorphic petrology, geochronology and trace element geochemistry) was applied to determine the age and composition of accessory phases (titanite, allanite and zircon) and their relation to major minerals. The results are used to reconstruct the polyphase structural and metamorphic history, comprising both pre-Alpine and Alpine cycles. The pre-Alpine evolution is associated with low-pressure high-temperature metamorphism related to Permo-Triassic lithospheric thinning. In meta-cherts, microtextural relations indicate coeval growth of allanite and garnet during this stage, at ~ 300 Ma. Textures of zircon also indicate crystallization at HT conditions; ages scatter from 263-294 Ma, with a major cluster of data at ~ 276 Ma. In impure marble, U-Pb analyses of titanite domains (with variable Al and F contents) yield apparent 206Pb/238U dates range from Permian to Jurassic. Chemical and isotopic data suggest that titanite formed at Permian times and was then affected by (extension-related?) fluid circulation during the Triassic and Jurassic, which redistributed major elements (Al and F) and partially opened the U-Pb system. The Alpine cycle lead to early blueschist facies assemblages, which were partly overprinted under greenschist facies conditions. The strong Alpine compressional overprint disrupted the pre-Alpine structural imprint and/or reactivated earlier structures. The pre-Alpine metamorphic record, preserved in these slices of metasediments, reflects the onset of the Permo-Triassic lithospheric extension to Jurassic rifting.