272 resultados para High resolution tools
Continuous meteorological observations in high-resolution (1Hz) at University of Oldenburg (2014-05)
Continuous meteorological observations in high-resolution (1Hz) at University of Oldenburg (2014-12)
Resumo:
Narrow-spaced oxygen and carbon stable isotope records of the planktonic foraminifer Globigerinoides ruber (white) were obtained at Ocean Drilling Program Leg 184 Site 1144 to establish a first record of high-resolution Pleistocene monsoon variability on orbital to centennial timescales in the northern South China Sea. The new records extend from the Holocene back to marine isotope Stage (MIS) 34 (1.1 Ma). Sedimentation rates average 0.56 m/k.y. for the upper Matuyama and Brunhes Chrons and increase to 1.8 m/k.y. over the last 100 k.y. Stable isotope records thus reach an average time resolution of 270-500 yr for the last 375 k.y. and 570 yr further back to 700 ka. On the other hand, major stratigraphic gaps were identified for peak warm Stages 5.5, 7.5 (down to 8.4), 11.3, and 15.5. These gaps probably resulted from short-lasting events of contour current erosion induced by short-term enhanced incursions of Upper Pacific Deep Water near the end of glacial terminations. A further major hiatus extends from MIS 34 to MIS 73(?). The long-term variations in monsoon climate were largely dominated by the 100-k.y. eccentricity cycle. Planktonic delta13C values culminated near 30, 480, and 1035 ka and reflect an overlying 450-k.y. eccentricity cycle of minimum nutrient concentrations in the surface ocean. Superimposed on the orbital variations, millennial-scale cycles were prominent throughout the last 700 k.y., mainly controlled by short-term changes in monsoon-driven precipitation and freshwater input from mainland China. During the last 110 k.y. these short-lasting oscillations closely match the record of 1500-yr Dansgaard-Oeschger climate cycles in the Greenland ice core record.
Resumo:
Due to its strong influence on heat and moisture exchange between the ocean and the atmosphere, sea ice is an essential component of the global climate system. In the context of its alarming decrease in terms of concentration, thickness and duration, understanding the processes controlling sea-ice variability and reconstructing paleo-sea-ice extent in polar regions have become of great interest for the scientific community. In this study, for the first time, IP25, a recently developed biomarker sea-ice proxy, was used for a high-resolution reconstruction of the sea-ice extent and its variability in the western North Pacific and western Bering Sea during the past 18,000 years. To identify mechanisms controlling the sea-ice variability, IP25 data were associated with published sea-surface temperature as well as diatom and biogenic opal data. The results indicate that a seasonal sea-ice cover existed during cold periods (Heinrich Stadial 1 and Younger Dryas), whereas during warmer intervals (Bølling-Allerød and Holocene) reduced sea ice or ice-free conditions prevailed in the study area. The variability in sea-ice extent seems to be linked to climate anomalies and sea-level changes controlling the oceanographic circulation between the subarctic Pacific and the Bering Sea, especially the Alaskan Stream injection though the Aleutian passes.
Continuous meteorological observations in high-resolution (1Hz) at University of Oldenburg (2014-04)
Resumo:
A high-resolution multiproxy study performed on a marine record from SE Pacific off southern South America was used to reconstruct past regional environmental changes and their relation to global climate, particularly to El Niño/Southern Oscillation (ENSO) phenomenon during the last 2200 years. Our results suggest a sustained northward shift in the position of the zonal systems, i.e. the Southern Westerly Wind belt and the Antarctic Circumpolar Current, which occurred between 1300 and 750 yr BP. The synchrony of the latitudinal shift with cooling in Antarctica and reduced ENSO activity observed in several marine and terrestrial archives across South America suggests a causal link between ENSO and the proposed displacement of the zonal systems. This shift might have acted as a positive feedback to more La Niña-like conditions between 1300 and 750 yr BP by steepening the hemispheric and tropical Pacific zonal sea surface temperature gradient. This scenario further suggests different boundary conditions for ENSO before 1300 and after 750 yr BP.
Resumo:
To explore cause and consequences of past climate change, very accurate age models such as those provided by the astronomical timescale (ATS) are needed. Beyond 40 million years the accuracy of the ATS critically depends on the correctness of orbital models and radioisotopic dating techniques. Discrepancies in the age dating of sedimentary successions and the lack of suitable records spanning the middle Eocene have prevented development of a continuous astronomically calibrated geological timescale for the entire Cenozoic Era. We now solve this problem by constructing an independent astrochronological stratigraphy based on Earth's stable 405 kyr eccentricity cycle between 41 and 48 million years ago (Ma) with new data from deep-sea sedimentary sequences in the South Atlantic Ocean. This new link completes the Paleogene astronomical timescale and confirms the intercalibration of radioisotopic and astronomical dating methods back through the Paleocene-Eocene Thermal Maximum (PETM, 55.930 Ma) and the Cretaceous-Paleogene boundary (66.022 Ma). Coupling of the Paleogene 405 kyr cyclostratigraphic frameworks across the middle Eocene further paves the way for extending the ATS into the Mesozoic.