96 resultados para High moisture contents
Resumo:
Total organic carbon to total nitrogen ratio (C/N) and their isotopic composition (d13CTOC vs. d15NTN) are oft-applied proxies to discern terrigenous from marine sourced organics and to unravel the ancient environmental information. In high depositional Asian marginal seas, matrixes, including N-bearing minerals, dilution leads to illusive and even contradictive interpretations. We use KOH-KOBr to separate operationally defined total organic matter into oxidizable (labile) and residual fractions for content and isotope measurements. In a sediment core in the Okinawa Trough, significant amounts of carbon and nitrogen existed in the residual phase, in which the C/N ratio was ~9 resembling most documented sedimentary bulk C/N ratios in the China marginal seas. Such similarity creates a pseudo-C/N interrupting the application of bulk C/N. The residual carbon, though composition unknown, it displayed a d13C range (-22.7 to -18.9 per mil, mean -20.7 per mil) similar to black carbon (-24.0 to -22.8 per mil) in East China Sea surface sediments. After removing residual fraction, we found the temporal pattern of d13CLOC in labile fraction (LOC) was more variable but broadly agreed with the atmospheric pCO2-induced changes in marine endmember d13C. Thus, we suggested adding pCO2-induced endmember modulation into two-endmember mixing model for paleo-environment reconstruction. Meanwhile, the residual nitrogen revealed an intimate association with illite content suggesting its terrestrial origin. Additionally, d15N in residual fraction likely carried the climate imprint from land. Further studies are required to explore the controlling factors for carbon and nitrogen isotopic speciation and to retrieve the information locked in the residual fraction.
Resumo:
The effects of elevated temperature and high pCO2 on the metabolism of Galaxea fascicularis were studied with oxygen and pH microsensors. Photosynthesis and respiration rates were evaluated from the oxygen fluxes from and to the coral polyps. High-temperature alone lowered both photosynthetic and respiration rates. High pCO2 alone did not significantly affect either photosynthesis or respiration rates. Under a combination of high-temperature and high-CO2, the photosynthetic rate increased to values close to those of the controls. The same pH in the diffusion boundary layer was observed under light in both (400 and 750 ppm) CO2 treatments, but decreased significantly in the dark as a result of increased CO2. The ATP contents decreased with increasing temperature. The effects of temperature on the metabolism of corals were stronger than the effects of increased CO2. The effects of acidification were minimal without combined temperature stress. However, acidification combined with higher temperature may affect coral metabolism due to the amplification of diel variations in the microenvironment surrounding the coral and the decrease in ATP contents.
Resumo:
Mercury distribution was examined in the sediments of Lake Baikal that were sampled within the scope of the Baikal Drilling International Project in 1996-1999. The Hg concentrations in the ancient sediments are close to those in the modern sediments with the exception of a few peak values, whose ages coincide with those of active volcanism in adjacent areas. Mercury was demonstrated to be contained in the sediments in the adsorbed Hg0 mode, predominantly in relation with organic matter. When the organic matter of the bottom sediments is decomposed in the course of lithification, Hg is retained in the sediments adsorbed on the residual organic matter, and the concentration of this element corresponds to its initial content in the bottom sediments during their accumulation. Mercury concentrations in lithologically distinct bottom sediments of Lake Baikal and its sediments as a whole depend on the climate. Sediments that were formed during warm periods of time contain more Hg than those produced during cold periods or glaciation. Periodical variations in the Hg concentrations in the bottom sediments of Lake Baikal reflect the variations in the contents of this element in the Earth's atmosphere in the Late Cenozoic, which were, in turn, controlled by the climatic variations on the planet and, thus, can be used for detailed reconstructions of variations in the average global temperature near the planet's surface.
Resumo:
Lithium isotopic compositions of hydrothermally altered sediments of Deep Sea Drilling Project (DSDP) site 477/477A, as well as high temperature vent fluids of the Guaymas Basin, have been determined to gain an understanding of lithium exchange during fluid-sediment interaction at this sediment-covered spreading center. Unaltered turbidite of the basin has a d6Li value of -10%, 5-7% heavier than fresh oceanic basalts. Contact metamorphism induced by a shallow sill intrusion results in a decrease of the lithium content of the adjacent sediments and a lighter isotopic value (-8%). Below the sill, sediments altered by a deep-seated hydrothermal system show strong depletions in lithium, while lithium isotopic compositions vary greatly, ranging from -11 to +1%. The shift to lighter composition is the result of preferential retention of the lighter isotope in recrystallized phases after destruction of the primary minerals. The complexity of the isotope profile is attributed to inhomogeneity in mineral composition, the tortuous pathway of fluids and the temperature effect on isotopic fractionation. The range of lithium concentration and d6Li values for the vent fluids sampled in 1982 and 1985 overlaps with that of the sediment-free mid-ocean ridge systems. The lack of a distinct expression of sediment input is explained in terms of a flow-through system with continuous water recharge. The observations on the natural system agree well with the results of laboratory hydrothermal experiments. The experimental study demonstrates the importance of temperature, pressure, water/rock ratio, substrate composition and reaction time on the lithium isotopic composition of the reacted fluid. High temperature authigenic phases do not seem to constitute an important sink for lithium and sediments of a hydrothermal system such as Guaymas are a source of lithium to the ocean. The ready mobility of lithium in the sediment under elevated temperature and pressure conditions also has important implications for lithium cycling in subduction zones.