86 resultados para Heavy-metal oxide glasses
Resumo:
A 3.38 m long sediment core raised from the tidal flat sediments of the 'Blauortsand' in the Wadden Sea northwest of Büsum (Schleswig-Holstein, Germany) was analysed in order to investigate long term changes in sediment pollution with Pb, Cu, Zn and Cd. Comparison with the topographic maps since 1952 and 210Pb activity allowed a general dating of the sediment succession in the core. The heavy metal concentrations including 210Pb of the < 20 µm grain-size fraction in thick sediment slices below 1.30 m indicated background niveaus. Their values increased and reached modern levels in the upper sediment layers of the core above 1 m. The increments for Pb, Cu, Zn was 1 to 3 fold and Cd up to 11 fold since the second half of the 19th century. More investigations are needed to quantify the geographical extent and history of the contaminations shown in this pilot study.
Resumo:
Results of experimental studies of ion exchange properties of manganese and iron minerals in micronodules from diverse bioproductive zones of the World Ocean were considered. It was found that sorption behavior of these minerals was similar to that of ore minerals from ferromanganese nodules and low-temperature hydrothermal crusts. The exchange complex of minerals in the micronodules includes the major (Na**+, K**+, Ca**2+, Mg**2+, and Mn**2+) and subordinate (Ni**2+, Cu**2+, Co**2+, Pb**2+, and others) cations. Reactivity of theses cations increases from Pb**2+ and Co**2+ to Na**+ and Ca**2+. Exchange capacity of micronodule minerals increases from alkali to heavy metal cations. Capacity of iron and manganese minerals in oceanic micronodules increases in the following series: goethite < goethite + birnessite < todorokite + asbolane-buserite + birnessite < asbolane-buserite + birnessite < birnessite + asbolane-buserite < birnessite + vernadite ~= Fe-vernadite + Mn-feroxyhyte. Obtained data supplement available information on ion exchange properties of oceanic ferromanganese sediments and refine the role of sorption processes in redistribution of metal cations at the bottom water - sediment interface during micronodule formation and growth.
Resumo:
Attempts to classify pelagic sediments have been based either on appearance and composition, or on the ultimate origin of the components. In particular it appears feasible to distinguish minerals which crystallized in sea-water from those which formed in magmas, in hydrothermal solution, or by weathering under acidic conditions. It is the case of iron and manganese oxide mineral aggregates which constitute one of the major types of rock encountered on the ocean floor; according to Menard (unpublished) about 10% of the pelagic area of the Pacific is covered by such nodules. The nodules consist of intimately intergrown crystallites of different minerals among those identified, besides detrital minerals and organic matter, are opal, goethite, rutile, anatase, barite, nontronite, and at least three manganese oxide minerals of major importance. Arrhenius and Korkisch (1959) have attempted to separate from each other the different minerals constituting the nodules, in order to establish the details of their structure and the localization of the heavy metal ions. The results demonstrate (Table II) that copper and nickel are concentrated in the manganese oxide phases concentrated in the reducible fraction. Cobalt, part of the nickel and most of the chromium are distributed between these and the acid-soluble group of the non-manganese minerals, dominated by goethite and disordered FeOOH.