768 resultados para Håkon Mosby Mud Volcano


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-seep environments and their associated symbiont-bearing mega faunal communities create islands of primary production for macro-and meiofauna in the otherwise monotonous and nutrient-poor deep-sea environment. To examine the spatial variation and distribution patterns of metazoan meiobenthos in different seepage-related habitats, samples were collected in two regions off Norway: several pockmarks associated with the Storegga Slide including the Nyegga pockmark area, and the active, methane-venting Haakon Mosby Mud Volcano west of the Barents Sea during the Vicking cruise aboard the RV ''PourquoiPas?'' in May-June 2006. Meiofaunal samples at control sites were sampled with a multiple corer, while the other sites were sampled with push cores operated by the ROV Victor6000.The meiofaunal samples were fixed in 4% buffered formaldehyde and washed over a 32 mm-mesh sieve. Metazoan meiofauna were extracted by density gradient centrifugation. All material was fixed with 4% buffered formalin and stained with Rose Bengal. The metazoan meiofauna was sorted out, enumerated and identified down to major taxa under the stereomicroscope. Afterwards, abundances of Nematodes were depth integrated over the top 5 cm to gain individual abundances per 10 cm**2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of gas hydrates at submarine mud volcanoes (MVs) located within the gas hydrate stability zone (GHSZ) is controlled by upward fluid and heat flux associated with MV activity. Determining the spatial distribution of gas hydrates at MVs is crucial to evaluate their sensitivity to known episodic changes in volcanic activity. We determined the hydrocarbon inventory and spatial distribution of hydrates at an individual MV structure. The Håkon Mosby Mud Volcano (HMMV), located at 1,250 m water depth on the Barents Sea slope, was investigated by combined pressure core sampling, heat flow measurements, and pore water chemical analysis. Quantitative pressure core degassing revealed gas-sediment ratios between 3.1 and 25.7, corresponding to hydrate concentrations of up to 21.3% of the pore volume. Hydrocarbon compositions and physicochemical conditions imply that gas hydrates incipiently crystallize as structure I hydrate, with a dissociation temperature of around 13.8°C at this water depth. Based on numerous in situ measurements of the geothermal gradient in the seabed, pore water sulfate profiles and microbathymetric data, we show that the thickness of the GHSZ increases from less than 1 m at the warm center to around 47 m in the outer parts of the HMMV. We estimate the total mass of hydrate-bound methane stored at the HMMV to be about 102.5 kt, of which 2.8 kt are located within the morphological Unit I around the center and thus are likely to be dissociated in the course of a large eruption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated if in a cold seep methane or sulfide is used for chemosynthetic primary production and if significant amounts of the sulfide produced by anaerobic oxidation of methane are oxidized geochemically and hence are not available for chemosynthetic production. Geochemically controlled redox reactions and biological turnover were compared in different habitats of the Håkon Mosby Mud Volcano. The center of the mud volcano is characterized by the highest fluid flow, and most primary production by the microbial community depends on oxidation of methane. The small amount of sulfide produced is oxidized geochemically with oxygen or is precipitated with dissolved iron. In the medium flow peripheral Beggiatoa habitat sulfide is largely oxidized biologically. The oxygen and nitrate supply is high enough that Beggiatoa can oxidize the sulfide completely, and chemical sulfide oxidation or precipitation is not important. An internally stored nitrate reservoir with average concentrations of 110 mmol L-1 enables the Beggiatoa to oxidize sulfide anaerobically. The pH profile indicates sequential sulfide oxidation with elemental sulfur as intermediate. Gray thiotrophic mats associated with perturbed sediments showed a high heterogeneity in sulfate turnover and high sulfide fluxes, balanced by the opposing oxygen and nitrate fluxes so that biological oxidation dominates over geochemical sulfide removal processes. The three habitats indicate substantial small-scale variability in carbon fixation pathways either through direct biological use of methane or through indirect carbon fixation of methane-derived carbon dioxide by chemolithotrophic sulfide oxidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Authigenic carbonates in the caldera of an Arctic (72°N) submarine mud volcano with active methane-bearing fluid discharge are formed at the bottom surface during anaerobic microbial methane oxidation. The microbial community consists of specific methane-producing bacteria, which act as methanotrophic ones in conditions of excess methane, and sulfate reducers developing on hydrogen, which is an intermediate product of microbial CH4 oxidation. Isotopically light carbon (aver. d13C = -28.9 per mil) of CO2 produced during CH4 oxidation is the main carbonate carbon source. Heavy oxygen isotope ratio (aver. d18O = 5 per mil) in carbonates is inherited from seawater sulfate. Rapid sulfate reduction (up to 12 mg S/dm**3/day) results in total exhausting of sulfate ion in the upper sediment layer (10 cm). Because of this carbonates can only be formed in surface sediments near the water-bottom interface. Salinity as well as CO3/Ca and Mg/Ca ratios correspond to the field of non-magnesian calcium carbonate precipitation. Calcite is the dominant carbonate mineral in the methane seep caldera, where it occurs in the paragenetic association with barite. Radiocarbon age of carbonates is about 10 Ka.