82 resultados para Fate and fatalism.
Resumo:
The subduction of oceanic plates regulates crustal growth, influences arc volcanism, and refertilizes the mantle. Continental growth occurs by subduction of crustal material (seawater components, marine sediments, and basaltic crust). The geochemical and physical evolution of the Earth's crust depends, in large part, on the fate of subducted material at convergent margins (Armstrong, 1968, doi:10.1029/RG006i002p00175; Karig and Kay, 1981, 10.1098/rsta.1981.0108). The crustal material on the downgoing plate is recycled to various levels in the subduction zone. The recycling process that takes place in the "Subduction Factory" is difficult to observe directly but is clearly illuminated using chemical tracers. Von Huene and Scholl (1991, doi:10.1029/91RG00969) and Plank and Langmuir (1993, doi:10.1038/362739a0) preliminarily calculated a large flux of subducted materials. By mass balancing the chemical tracers and measuring the fractionations that occur between them, the Subduction Factory work and the effect on the Earth's evolution can be estimated. In order to elucidate this mass balance, Ocean Drilling Program Leg 185 drilled two deepwater shales into the oceanic crust situated in the Mariana-Izu Trenches and recovered core samples of incoming oceanic crust. The calculations of mass circulation in the subduction zone, however, did not take into account the mass transfer properties within subducted oceanic crust, although the dewatering fluid and diffused ions may play an important role in various activities such as seismogeneity, serpentine diapiring, and arc volcanism. Thus, this paper focuses on the quantitative measurements of the physical and mass transfer properties of subducted oceanic crust.
The CCRUSH Study: Coarse and fine particulate matter measurements in northeastern Colorado 2009-2012
Resumo:
Coarse (PM10-2.5) and fine (PM2.5) particulate matter in the atmosphere adversely affect human health and influence climate. While PM2.5 is relatively well studied, less is known about the sources and fate of PM10-2.5. The Colorado Coarse Rural-Urban Sources and Health (CCRUSH) study measured PM10-2.5 and PM2.5 mass concentrations, as well as the fraction of semi-volatile material (SVM) in each size regime (SVM2.5, SVM10-2.5), for three years in Denver and comparatively rural Greeley, Colorado. Agricultural operations east of Greeley appear to have contributed to the peak PM10-2.5 concentrations there, but concentrations were generally lower in Greeley than in Denver. Traffic-influenced sites in Denver had PM10-2.5 concentrations that averaged from 14.6 to 19.7 µg/m**3 and mean PM10-2.5/PM10 ratios of 0.56 to 0.70, higher than at residential sites in Denver or Greeley. PM10-2.5 concentrations were more temporally variable than PM2.5 concentrations. Concentrations of the two pollutants were not correlated. Spatial correlations of daily averaged PM10-2.5 concentrations ranged from 0.59 to 0.62 for pairs of sites in Denver and from 0.47 to 0.70 between Denver and Greeley. Compared to PM10-2.5, concentrations of PM2.5 were more correlated across sites within Denver and less correlated between Denver and Greeley. PM10-2.5 concentrations were highest during the summer and early fall, while PM2.5 and SVM2.5 concentrations peaked in winter during periodic multi-day inversions. SVM10-2.5 concentrations were low at all sites. Diurnal peaks in PM10-2.5 and PM2.5 concentrations corresponded to morning and afternoon peaks of traffic activity, and were enhanced by boundary layer dynamics. SVM2.5 concentrations peaked around noon on both weekdays and weekends. PM10-2.5 concentrations at sites located near highways generally increased with wind speeds above about 3 m/s. Little wind speed dependence was observed for the residential sites in Denver and Greeley.
Resumo:
Salty and warm Indian Ocean waters enter the South Atlantic via the Agulhas leakage, south of Africa. Model simulations and proxy evidence of Agulhas leakage strengthening during glacial terminations led to the hypothesis that it was an important modulator of the Atlantic Ocean circulation. Yet, the fate of the leakage salinity and temperature anomalies remains undocumented beyond the southern tip of Africa. Downstream of the leakage, new paleoceanographic evidence from the central Walvis Ridge (southeast Atlantic) shows that salinity increased at the thermocline, and less so at the surface, during glacial termination II. Thermocline salinity change coincided with higher frequency of Agulhas rings passage at the core location and with salinity maxima in the Agulhas leakage area, suggesting that leakage waters were incorporated in the Atlantic circulation through the thermocline. Hydrographic changes at the Walvis Ridge and in the leakage area display a distinct two-step structure, with a reversal at ca. 134 ka. This matched a wet interlude within the East Asia weak monsoon interval of termination II, and a short-lived North Atlantic warming. Such concurrence points to a Bølling-Allerød-like recovery of the Atlantic circulation amidst termination II, with a northward shift of the Intertropical Convergence Zone and Southern Hemisphere westerlies, and attendant curtailment of the interocean connection south of Africa.
Resumo:
During the period in question, large ice drifts transported incalculable numbers of icebergs, ice fields and ice floes from the Antarctica into the South Atlantic, confronting long-journeying sailing ships on the Cape Horn route with considerable danger. As is still the case today, the ice drifts generally tended in a northeasterly direction. Thus it can be assumed that the ice masses occuring near Cape Horn and in the South Atlantic originated in Graham Land and the South Shetland Islands, while those found in the Pacific will have come from Victoria Land. The masses drifting to Cape Horn, Isla de los Estados, the Falkland Islands and occasionally as far as the Tristan da Cunha Group are transported by the West Wind Drift and Falkland Current, diverted by the Brazil Current. The Bouvet and Agulhas Currents have little influence here. The great ice masses repeatedly reached points beyond the "outermost drift ice boundery" calculated in the course of the years, to continue on in the direction of the equator. The number of sailing ships which fell victim to the ice drifts while rounding Cape Horn can only be surmised; they simply disappeared without a trace in the expanses of the South Atlantic. Until the end of the 1900s the dangers presented by ice were less serious for westward-bound ships than for the "homeward-bounders" travelling from West to East. Following the turn of the century, however, the risk for "onwardbounders" increased significantly. Whether the ice drifts actually grew in might or whether the more frequent and more detailed reports led to this impression, could never be ascertained by the German Hydrographie Office. In the forty-one years between 1868 and 1908, ten light, ten medium and nine heavy ice years were counted, and only twelve years in which no reports of ice were submitted to the German Hydrographie Office. "One of the most terrible dangers threatening ships on their return from the Pacific Ocean," the pilot book for the Atlantic Ocean warns, "is the encounter with ice, to be expected south of the 50th parallel (approx.) in the Pacific and south of the 40th parallel (approx.) in the South Atlantic." Following the ice drift of 1854-55, thought to be the first ever recorded, the increasing numbers of sailing ships rounding Cape Horn were frequently confronted with drifts of varying sizes or with single icebergs. Then from 1892-94, a colossal ice drift crossed the path of the sailships in three stages. Several sailing ships collided with the icebergs and could be counted lucky if they survived with heavy damage to the bow and the fo regear. The reports on those which vanished for ever in the ice masses are hardly of investigative value. The English suffered particularly badly in the ice-plagued waters; their captains apparently sailed courses that led more freqently through drifts than did the sailing instructions of the German Hydrographic Office. Thus, among others, Capt. Jarvis' DUNTRUNE, also the STANMORE, ARTHURSTONE and LORD RANOCH as well as the French GALATHEE and CASHMERE all collided with icebergs. The crew of the AETHELBERTH panicked after a collision and took to their lifeboats. It was only after the ship detached itself from the iceberg it had rammed that the men returned to it and continued their journey. The TEMPLEMORE, on the other hand, had to be abandoned for good. Of the German sailing ships, the FLOTOW is to be mentioned here, and in the third phase of the drift the American SAN JOAQUIN lost a large proportion of its rigging. In the 20th century ice drifts continued to cross the courses of the Cape Horn ships. 1906 and 1908 were recorded as particularly heavy ice years. In 1908-09 both the FALKLANDBANK and the TOXTETH fell prey to ice, or so it was assumed during the subsequent Maritime Board proceedings. For the most part the German sailing ships were spared greater damages by sea. Their captains sent detailed ice reports to the German Hydrographic Office, which gratefully welcomed the information and partially incorporated it in the third and final edition of the "Pilot Book for the Atlantic Ocean." From the end of 1926 until the beginning of 1928, the last of the large sailing ships were once again confronted with "tremendous masses of icebergs and ice drifts." Reports of this period originated above all on the P-Liners PADUA, PAMIR, PASSAT, PEKING, PINNAS, PRIWALL and the ships of Gustav Erikson's fleet. The fate of the training sailship ADMIRAL KARPFANGER in connection with the ice in early 1938 was never clearly determined by the Maritime Board proceedings. Collision with an iceberg, however, is thought to be the most likely cause of accident. Today freight sailing ships no longer cross the oceans. The Cape Horn route is relatively insignificant for engine-powered ships and icebergs can be spotted in plenty of time by modern navigation technology ... The large ice drifts are no longer a menace, but only a marginal note in the final chapter of the history of transoceanic sailing.
Resumo:
The Northern Bay of Bengal (NBoB) is a globally important region for deep-sea organic matter (OM) deposition due to massive fluvial discharge from the Ganges-Brahmaputra-Meghna (G-B-M) rivers and moderate to high surface productivity. Previous studies have focused on carbon burial in turbiditic sediments of the Bengal Fan. However, little is known about the storage of carbon in pelagic and hemipelagic sediments of the Bay of Bengal over millennial time scales. This study presents a comprehensive history of OM origin and fate as well as a quantification of carbon sediment storage in the Eastern Bengal Slope (EBS) during the last 18 ka. Bulk organic proxies (TOC, TIC, TN, d13CTOC, d15NTN) and content and composition of total hydrolysable amino acids (THAA) in a sediment core (SO188-342KL) from the EBS were analyzed. Three periods of high OM accumulation were identified: the Late Glacial (LG), the Bölling/Alleröd (B/A), and the Early Holocene Climatic Optimum (EHCO). Lower eustatic sea level before 15 ka BP allowed a closer connection between the EBS and the fluvial debouch, favoring high terrestrial OM input to the core site. This connection was progressively lost between 15 and 7 ka BP as sea level rose to its present height and terrestrial OM input decreased considerably. Export and preservation of marine OM was stimulated during periods of summer monsoon intensification (B/A and EHCO) as a consequence of higher surface productivity enhanced by cyclonic-eddy nutrient pumping and fluvial nutrient delivery into the photic zone. Changes in the THAA composition indicate that the marine plankton community structure shifted from calcareous-dominated before 13 ka BP to siliceous-dominated afterwards. They also indicate that the relative proportion of marine versus terrestrial OM deposited at site 342KL was primarily driven by relative sea level and enlarged during the Holocene. The ballasting effect of lithogenic particles during periods of high coastal proximity and/or enhanced fluvial discharge promoted the export and preservation of OM. The high organic carbon accumulation rates in the EBS during the LG (18-17 ka BP) were 5-fold higher than at present and comparable to those of glacial upwelling areas. Despite the differences in sediment and OM transport and storage among the Western and Eastern sectors of the NBoB, this region remains important for global carbon sequestration during sea level low-stands. In addition, the summer monsoon was a key promotor of terrestrial and marine OM export to the deep-ocean, highlighting its relevance as regulator of the global carbon budget.
Resumo:
High acoustic seafloor-backscatter signals characterize hundreds of patches of methane-derived authigenic carbonates and chemosynthetic communities associated with hydrocarbon seepage on the Nile Deep Sea Fan (NDSF) in the Eastern Mediterranean Sea. During a high-resolution ship-based multibeam survey covering a ~ 225 km**2 large seafloor area in the Central Province of the NDSF we identified 163 high-backscatter patches at water depths between 1500 and 1800 m, and investigated the source, composition, turnover, flux and fate of emitted hydrocarbons. Systematic Parasound single beam echosounder surveys of the water column showed hydroacoustic anomalies (flares), indicative of gas bubble streams, above 8% of the high-backscatter patches. In echosounder records flares disappeared in the water column close to the upper limit of the gas hydrate stability zone located at about 1350 m water depth due to decomposition of gas hydrate skins and subsequent gas dissolution. Visual inspection of three high-backscatter patches demonstrated that sediment cementation has led to the formation of continuous flat pavements of authigenic carbonates typically 100 to 300 m in diameter. Volume estimates, considering results from high-resolution autonomous underwater vehicle (AUV)-based multibeam mapping, were used to calculate the amount of carbonate-bound carbon stored in these slabs. Additionally, the flux of methane bubbles emitted at one high-backscatter patch was estimated (0.23 to 2.3 × 10**6 mol a**-1) by combined AUV flare mapping with visual observations by remotely operated vehicle (ROV). Another high-backscatter patch characterized by single carbonate pieces, which were widely distributed and interspaced with sediments inhabited by thiotrophic, chemosynthetic organisms, was investigated using in situ measurements with a benthic chamber and ex situ sediment core incubation and allowed for estimates of the methane consumption (0.1 to 1 × 10**6 mol a**-1) and dissolved methane flux (2 to 48 × 10**6 mol a**-1). Our comparison of dissolved and gaseous methane fluxes as well as methane-derived carbonate reservoirs demonstrates the need for quantitative assessment of these different methane escape routes and their interaction with the geo-, bio-, and hydrosphere at cold seeps.
Resumo:
Gas hydrothermal vents are used as a natural analogue for studying the effects of CO2 leakage from hypothetical shallow marine storage sites on benthic and pelagic systems. This study investigated the interrelationships between planktonic prokaryotes and viruses in the Panarea Islands hydrothermal system (southern Tyrrhenian Sea, Italy), especially their abundance, distribution and diversity. No difference in prokaryotic abundance was shown between high-CO2 and control sites. The community structure displayed differences between fumarolic field and the control, and between surface and bottom waters, the latter likely due to the presence of different water masses. Bacterial assemblages were qualitatively dominated by chemo- and photoautotrophic organisms, able to utilise both CO2 and H2S for their metabolic requirements. From significantly lower virioplankton abundance in the proximity of the exhalative area together with particularly low Virus-to-Prokaryotes Ratio, we inferred a reduced impact on prokaryotic abundance and proliferation. Even if the fate of viruses in this particular condition remains still unknown, we consider that lower viral abundance could reflect in enhancing the energy flow to higher trophic levels, thus largely influencing the overall functioning of the system.