78 resultados para FLUID CONCENTRATIONS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lead isotopic compositions and Pb and Ba concentrations have been measured in ice cores from Law Dome, East Antarctica, covering the past 6500 years. 'Natural' background concentrations of Pb (ab. 0.4 pg/g) and Ba (ab. 1.3 pg/g) are observed until 1884 AD, after which increased Pb concentrations and lowered 206Pb/207Pb ratios indicate the influence of anthropogenic Pb. The isotopic composition of 'natural' Pb varies within the range 206Pb/207Pb=1.20-1.25 and 208Pb/207Pb=2.46-2.50, with an average rock and soil dust Pb contribution of 8-12%. A major pollution event is observed at Law Dome between 1884 and 1908 AD, elevating the Pb concentration four-fold and changing 206Pb/207Pb ratios in the ice to ab. 1.12. Based on Pb isotopic systematics and Pb emission statistics, this is attributed to Pb mined at Broken Hill and smelted at Broken Hill and Port Pirie, Australia. Anthropogenic Pb inputs are at their greatest from 1900 to 1910 and from ab. 1960 to ab. 1980. During the 20th century, Ba concentrations are consistently higher than 'natural' levels and are attributed to increased dust production, suggesting the influence of climate change and/or changes in land coverage with vegetation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

d37Cl values were determined for Izu Bonin arc magmas erupted 0-44 Ma in order to better understand the time-dependent processing of volatiles in subduction zones. Pristine ash-sized particles (glass, pumice, scoria, and rock fragments) were handpicked from tephra drilled at ODP Site 782. d37Cl values for these particles span a large range from -2.1 to +1.7 per mil (error = ± 0.3 per mil) vs. SMOC (Standard Mean Ocean Chloride, defined as 0 per mil). The temporal data extend the previously reported range of d37Cl values of -2.6 to 0.4 per mil (bulk ash) and -5.4 to -0.1 per mil (volcanic gases) from the Quaternary Izu Bonin-Mariana volcanic front to more positive values. Overall, the temporal data indicate a time-progressive evolution, from isotopically negative Eocene and Oligocene magmas (-0.7 ± 1.1 per mil, n = 10) to Neogene magmas that have higher ?37Cl values on average (+0.3 ± 1.1 per mil; n = 13). The increase is due to the emergence of positive d37Cl values in the Neogene, while minimum d37Cl values are similar through time. The range in d37Cl values cannot be attributed to fractionation during melt formation and differentiation, and must reflect the diversity of Cl present in the arc magma sources. Cl clearly derives from the slab (> 96% Cl in arc magmas), but d37Cl values do not correlate with isotope tracers (e.g. 207Pb/204Pb and 87Sr/86Sr) that are indicative of the flux from subducting sedimentary and igneous crust. Given the steady, high Cl flux since at least 42 Ma, the temporal variability of d37Cl values is best explained by a flux from subducting isotopically positive and negative serpentinite formed in the ocean basins that mingles with and possibly overprints the isotopically negative flux from sediment and igneous crust at arc front depths. The change in the d37Cl values before and after backarc spreading may reflect either a tectonically induced change in the mechanism of serpentinite formation on the oceanic plate, or possibly the integration of isotopically positive wedge serpentinite as arc fluid source during the Neogene. Our study suggests that serpentinites are important fluid sources at arc front depth, and implies the return of isotopically positive and negative Cl from the Earth surface to the mantle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ultramafic-hosted Logatchev Hydrothermal Field (LHF) at 15°N on the Mid-Atlantic Ridge and the Arctic Gakkel Ridge (GR) feature carbonate precipitates (aragonite, calcite, and dolomite) in voids and fractures within different types of host rocks. We present chemical and Sr isotopic compositions of these different carbonates to examine the conditions that led to their formation. Our data reveal that different processes have led to the precipitation of carbonates in the various settings. Seawater-like 87Sr/86Sr ratios for aragonite in serpentinites (0.70909 to 0.70917) from the LHF are similar to those of aragonite from the GR (0.70912 to 0.70917) and indicate aragonite precipitation from seawater at ambient conditions at both sites. Aragonite veins in sulfide breccias from LHF also have seawater-like Sr isotope compositions (0.70909 to 0.70915), however, their rare earth element (REE) patterns show a clear positive europium (Eu) anomaly indicative of a small (< 1%) hydrothermal contribution. In contrast to aragonite, dolomite from the LHF has precipitated at much higher temperatures (~100 °C), and yet its 87Sr/86Sr ratios (0.70896 to 0.70907) are only slightly lower than those of aragonite. Even higher temperatures are calculated for the precipitation of deformed calcite veins in serpentine-talc fault schists form north of the LHF. These calcites show unradiogenic 87Sr/86Sr ratios (0.70460 to 0.70499) indicative of precipitation from evolved hydrothermal fluids. A simple mixing model based on Sr mass balance and enthalpy conservation indicates strongly variable conditions of fluid mixing and heat transfers involved in carbonate formation. Dolomite precipitated from a mixture of 97% seawater and 3% hydrothermal fluid that should have had a temperature of approximately 14 °C assuming that no heat was transferred. The much higher apparent precipitation temperatures based on oxygen isotopes (~ 100 °C) may be indicative of conductive heating, probably of seawater prior to mixing. The hydrothermal calcite in the fault schist has precipitated from a mixture of 67% hydrothermal fluid and 33% seawater, which should have had an isenthalpic mixing temperature of ~ 250 °C. The significantly lower temperatures calculated from oxygen isotopes are likely due to conductive cooling of hydrothermal fluid discharging along faults. Rare earth element patterns corroborate the results of the mixing model, since the hydrothermal calcite, which formed from waters with the greatest hydrothermal contribution, has REE patterns that closely resemble those of vent fluids from the LHF. Our results demonstrate, for the first time, that (1) precipitation from pure seawater, (2) conductive heating of seawater, and (3) conductive cooling of hydrothermal fluids in the sub-seafloor all can lead to carbonate precipitation within a single ultramafic-hosted hydrothermal system.