301 resultados para Estimator standard error and efficiency
Resumo:
Carbon-14 determinations on box cores of calcareous ooze from the western and eastern equatorial Pacific suggest that patterns of mixed-layer ages, sedimentation rates, and mixed-layer thicknesses are controlled by gradients of carbonate dissolution and fertility, and by small-scale redeposition processes. Mixed-layer ages range from 3000 to 7000 years, with a mode between 4000 and 5000 years. Sedimentation rates range from 0.8 to 2.4 cm/1000 years. Mixed-layer depths, calculated according to the box model of mixing, range from 7 cm to 16 cm. Observed thicknesses are about one-fourth smaller than calculated ones.
Resumo:
Laminated sediments deposited under anoxic bottom waters in the Japan Sea during the last glacial maximum (LGM) contain extremely well preserved calcareous microfossils and eolian carbonates. The radiocarbon age-difference between bulk sediment and monospecific planktonic foraminifera in discrete laminae from a core in the southern Japan Sea implies that ~40% of the total carbonates in the sediments at the LGM are of eolian origin. Extrapolation of this result yields a rate of supply of eolian carbonates of ~2800 tons/d to the entire Japan Sea during the LGM. The climatic significance of this flux potentially lies in its broader geographic extension, particularly in the interaction of the carbonate-bearing dust with shallow, corrosive North Pacific waters and with rain in the atmosphere. By increasing the alkalinity of such waters and by enhancing the biological pump the dust flux could have increased CO2 absorption by both the ocean and rain during the LGM.
Resumo:
Ice-rafting evidence for a '1500-year cycle' sparked considerable debate on millennial-scale climate change and the role of solar variability. Here, we reinterpret the last 70,000 years of the subpolar North Atlantic record, focusing on classic DSDP Site 609, in the context of newly available raw data, the latest radiocarbon calibration (Marine09) and ice core chronology (GICC05), and a wider range of statistical methodologies. A ~1500-year oscillation is primarily limited to the short glacial Stage 4, the age of which is derived solely from an ice flow model (ss09sea), subject to uncertainty, and offset most from the original chronology. Results from the most well-dated, younger interval suggest that the original 1500 ± 500 year cycle may actually be an admixture of the ~1000 and ~2000 cycles that are observed within the Holocene at multiple locations. In Holocene sections these variations are coherent with 14C and 10Be estimates of solar variability. Our new results suggest that the '1500-year cycle' may be a transient phenomenon whose origin could be due, for example, to ice sheet boundary conditions for the interval in which it is observed. We therefore question whether it is necessary to invoke such exotic explanations as heterodyne frequencies or combination tones to explain a phenomenon of such fleeting occurrence that is potentially an artifact of arithmetic averaging.
Resumo:
Determining the response of sites within the Arctic Circle to long-term climatic change remains an essential pre-requisite for assessing the susceptibility of these regions to future global warming and Arctic amplification. To date, existing records from North East Russia have demonstrated significant spatial variability across the region during the late Quaternary. Here we present diatom d18O and d30Si data from Lake El'gygytgyn, Russia, and suggest environmental changes that would have impacted across West Beringia from the Last Glacial Maximum to the modern day. In combination with other records, the results raise the potential for climatic teleconnections to exist between the region and sites in the North Atlantic. The presence of a series of 2-3 per mil decreases in d18Odiatom during both the Last Glacial and the Holocene indicates the sensitivity of the region to perturbations in the global climate system. Evidence of an unusually long Holocene thermal maximum from 11.4 ka BP to 7.6 ka BP is followed by a cooling trend through the remainder of the Holocene in response to changes in solar insolation. This is culminated over the last 900 years by a significant decrease in d18Odiatom of 2.3 per mil, which may be related to a strengthening and easterly shift of the Aleutian Low in addition to possible changes in precipitation seasonality.
Resumo:
Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12 degrees latitudes featuring a steep temperature gradient between the northern (28.5 degrees N, 21-27 degrees C) and southern (16.5 degrees N, 28-33 degrees C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29 degrees C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals
Resumo:
Few studies exist reporting on long-term exposure of crustaceans to hypercapnia. We exposed juvenile South African rock lobsters, Jasus lalandii, to hypercapnic conditions of pH 7.3 for 28 weeks and subsequently analysed changes in the extracellular fluid (haemolymph). Results revealed, for the first time, adjustments in the haemolymph of a palinurid crustacean during chronic hypercapnic exposure: 1) acid-base balance was adjusted and sustained by increased bicarbonate and 2) quantity and oxygen binding properties of haemocyanin changed. Compared with lobsters kept under normocapnic conditions (pH 8.0), during prolonged hypercapnia, juvenile lobsters increased bicarbonate buffering of haemolymph. This is necessary to provide optimum pH conditions for oxygen binding of haemocyanin and functioning of respiration in the presence of a strong Bohr Effect. Furthermore, modification of the intrinsic structure of the haemocyanin molecule, and not the presence of molecular modulators, seems to improve oxygen affinity under conditions of elevated pCO2.
Resumo:
We present sea surface temperature (SST) estimates based on the relative abundances of long-chain C37 alkenones (UK37') in four sediment cores from a transect spanning the subtropical to subantarctic waters across the subtropical front east of New Zealand. SST estimates from UK37' are compared to those derived from foraminiferal assemblages (using the modern analog technique) in two of these cores. Reconstructions of SST in core tops and Holocene sediments agree well with modern average summer temperatures of ~18°C in subtropical waters and ~14°C in subpolar waters, with a 4°-5°C gradient across the front. Down core UK37' SST estimates indicate that the regional summer SST was 4°-5°C cooler during the last glaciation with an SST of ~10°C in subpolar waters and an SST of ~14°C in subtropical waters. Temperature reconstructions from foraminiferal assemblages agree with those derived from alkenones for the Holocene. In subtropical waters, reconstructions also agree with a glacial cooling of 4° to ~14°C. In contrast, reconstructions for subantarctic pre-Holocene waters indicate a cooling of 8°C with glacial age warm season water temperatures of ~6°C. Thus the alkenones suggest the glacial temperature gradient across the front was the same or reduced slightly to 3.5°-4°C, whereas foraminiferal reconstructions suggest it doubled to 8°C. Our results support previous work indicating that the STF remained fixed over the Chatham Rise during the Last Glacial Maximum. However, the differing results from the two techniques require additional explanation. A change in euphotic zone temperature profiles, seasonality of growth, or preferred growth depth must have affected the temperatures recorded by these biologically based proxies. Regardless of the specific reason, a differential response to the environmental changes between the two climate regimes by the organisms on which the estimates are based suggests increased upwelling associated with increased winds and/or a shallowing of the thermocline associated with increased stratification of the surface layer in the last glaciation.
Resumo:
Neogene climates and vegetation history of western Yunnan are reconstructed on the basis of known fossil plants using the Coexistence Approach (CA) and Leaf Margin Analysis (LMA). Four Neogene leaf floras from Tengchong, Jianchuan and Eryuan in southwestern China are analyzed by the CA, and the paleoclimatic data of one Miocene carpoflora from Longling and three Pliocene palynofloras from Longling, Yangyi and Eryuan are used for comparison. The Miocene vegetation of the whole of West Yunnan is subtropical evergreen broad-leaved forest, and a similar mean annual precipitation is inferred for Tengchong, Longling and Jianchuan. However, by the Late Pliocene a large difference in vegetation occurred between the two slopes of Gaoligong Mountain, western Yunnan. The region of Tengchong retained a subtropical evergreen broad-leaved forest vegetation, whereas in Yangyi and Eryuan a vertical vegetation zonation had developed, which consists, in ascending order, of humid evergreen broad-leaved, needle and broad-leaved mixed evergreen, and coniferous forests. Distinctively, the Late Pliocene vegetational patterns of West Yunnan were already very similar to those of the present, and the Pliocene mean annual precipitation in Tengchong was markedly higher than that of Yangyi and Eryuan. Considering that the overall vegetation of West Yunnan and the precipitation at Yangyi and Eryuan have undergone no distinct change since the Late Pliocene, we conclude that the Hengduan Mountains on the northern boundary of West Yunnan must have arisen after the Miocene and approached their highest elevation before the Late Pliocene. Furthermore, the fact of the eastern portion of the Tibetan Plateau underwent a slight uplift after the Late Pliocene is also supported.
Resumo:
The distribution of rainfall in tropical Africa is controlled by the African rainbelt**1, which oscillates on a seasonal basis. The rainbelt has varied on centennial to millennial timescales along with changes in Northern Hemisphere high-latitude climate**2, 3, 4, 5, the Atlantic meridional overturning circulation**6 and low-latitude insolation**7 over the past glacial-interglacial cycle. However, the overall dynamics of the African rainbelt remain poorly constrained and are not always consistent with a latitudinal migration**2, 4, 5, 6, as has been proposed for other regions**8, 9. Here we use terrestrially derived organic and sedimentary markers from marine sediment cores to reconstruct the distribution of vegetation, and hence rainfall, in tropical Africa during extreme climate states over the past 23,000 years. Our data indicate that rather than migrating latitudinally, the rainbelt contracted and expanded symmetrically in both hemispheres in response to changes in climate. During the Last Glacial Maximum and Heinrich Stadial 1, the rainbelt contracted relative to the late Holocene, which we attribute to a latitudinal compression of atmospheric circulation associated with lower global mean temperatures**10. Conversely, during the mid-Holocene climatic optimum, the rainbelt expanded across tropical Africa. In light of our findings, it is not clear whether the tropical rainbelt has migrated latitudinally on a global scale, as has been suggested**8,9.
Resumo:
The present study examines sublethal effects of near-future (year 2100) ocean acidification (OA) on regenerative capacity, biochemical composition, and behavior of the sea star Luidia clathrata, a predominant predator in sub-tropical soft-bottom habitats. Two groups of sea stars, each with two arms excised, were maintained on a formulated diet in seawater bubbled with air alone (pH 8.2, approximating a pCO2 of 380 µatm) or with a controlled mixture of air/C02 (pH 7.8, approximating a pCO2 of 780 µatm). Arm length, total body wet weight, and righting responses were measured weekly. After 97 days, a period of time sufficient for 80% arm regeneration, pyloric caecal indices, and protein, carbohydrate, lipid, and ash levels were determined for body wall and pyloric caecal tissues of intact and regenerating arms of individuals held in both seawater pH treatments. The present study indicates that predicted near-term levels of ocean acidification (seawater pH 7.8) do not significantly impact whole animal growth, arm regeneration rates, biochemical composition, or righting behavior in this common soft bottom sea star.
Resumo:
Ocean acidification, the assimilation of atmospheric CO2 by the oceans that decreases the pH and CaCO3 saturation state (Omega) of seawater, is projected to have severe adverse consequences for calcifying organisms. While strong evidence suggests calcification by tropical reef-building corals containing algal symbionts (zooxanthellae) will decline over the next century, likely responses of azooxanthellate corals to ocean acidification are less well understood. Because azooxanthellate corals do not obtain photosynthetic energy from symbionts, they provide a system for studying the direct effects of acidification on energy available for calcification. The solitary azooxanthellate orange cup coral Balanophyllia elegans often lives in low-pH, upwelled waters along the California coast. In an 8-month factorial experiment, we measured the effects of three pCO2 treatments (410, 770, and 1220 µatm) and two feeding frequencies (3-day and 21-day intervals) on "planulation" (larval release) by adult B. elegans, and on the survival, skeletal growth, and calcification of newly settled juveniles. Planulation rates were affected by food level but not pCO2. Juvenile mortality was highest under high pCO2 (1220 µatm) and low food (21-day intervals). Feeding rate had a greater impact on calcification of B. elegans than pCO2. While net calcification was positive even at 1220 µatm (~3 times current atmospheric pCO2), overall calcification declined by ~25-45%, and skeletal density declined by ~35-45% as pCO2 increased from 410 to 1220 µatm. Aragonite crystal morphology changed at high pCO2, becoming significantly shorter but not wider at 1220 µatm. We conclude that food abundance is critical for azooxanthellate coral calcification, and that B. elegans may be partially protected from adverse consequences of ocean acidification in habitats with abundant heterotrophic food.