122 resultados para Elevated-temperatures
Resumo:
The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur. The serpentinites contain a sulfur-rich secondary mineral assemblage and have high sulfur contents (up to 1 wt.%) and elevated d34S_sulfide (3.7 to 12.7?). Geochemical reaction modeling indicates that seawater-peridotite interaction at 300 to 400°C alone cannot account for both the high sulfur contents and high d34S_sulfide. These require a multistage reaction with leaching of sulfide from subjacent gabbro during higher temperature (~400°C) reactions with seawater and subsequent deposition of sulfide during serpentinization of peridotite at ~300°C. Serpentinization produces highly reducing conditions and significant amounts of H2 and results in the partial reduction of seawater carbonate to methane. The latter is documented by formation of carbonate veins enriched in 13C (up to 4.5?) at temperatures above 250°C. Although different processes produce variable sulfur isotope effects in other oceanic serpentinites, sulfur is consistently added to abyssal peridotites during serpentinization. Data for serpentinites drilled and dredged from oceanic crust and from ophiolites indicate that oceanic peridotites are a sink for up to 0.4 to 6.0 mln ton seawater S per year. This is comparable to sulfur exchange that occurs in hydrothermal systems in mafic oceanic crust at midocean ridges and on ridge flanks and amounts to 2 to 30% of the riverine sulfate source and sedimentary sulfide sink in the oceans. The high concentrations and modified isotope compositions of sulfur in serpentinites could be important for mantle metasomatism during subduction of crust generated at slow spreading rates.
Resumo:
Geochemical analyses of extraordinarily well preserved late Aptian-early Albian foraminifera from Blake Nose (Ocean Drilling Program Site 1049) reveal rapid shifts of d18O, d13C, and 87Sr/88Sr in the subtropical North Atlantic that may be linked to a major planktic foraminifer extinction event across the Aptian/Albian boundary. The abruptness of the observed geochemical shifts and their coincidence with a sharp lithologic contact is explained as an artifact of a previously undetected hiatus of 0.8-1.4 million years at the boundary contact, but the values before and after the hiatus indicate that major oceanographic changes occurred at this time. 87Sr/88Sr increase by ~0.000200, d13C values decrease by 1.5 per mil to 2.2 per mil, and d18O values decrease by ~1.0 per mil (planktics) to 0.5 per mil (benthics) across the hiatus. Further, both 87Sr/88Sr ratios and d18O values during the Albian are anomalously high. The 87Sr/88Sr values deviate from known patterns to such a degree that an explanation requires either the presence of inter-basin differences in seawater 87Sr/88Sr during the Albian or revision of the seawater curve. For d18O, planktic values in some Aptian samples likely reflect a diagenetic overprint, but preservation is excellent in the rest of the section. In well preserved material, benthic foraminiferal values are largely between 0.5 and 0.0 per mil and planktic samples are largely between 0.0 per mil to -1.0 per mil, with a brief excursion to -2.0 per mil during OAE 1b. Using standard assumptions for Cretaceous isotopic paleotemperature calculations, the d18O values suggest bottom water temperatures (at ~1000 -1500 m) of 8-10°C and surface temperatures of 10-14°C, which are 4-6°C and 10-16°C cooler, respectively, than present-day conditions at the same latitude. The cool subtropical sea surface temperature estimates are especially problematic because other paleoclimate proxy data for the mid-Cretaceous and climate model predictions suggest that subtropical sea surface temperatures should have been the same as or warmer than at present. Because of their exquisite preservation, whole scale alteration of the analyzed foraminifera is an untenable explanation. Our proposed solution is a high evaporative fractionation factor in the early Albian North Atlantic that resulted in surface waters with higher d18O values at elevated salinities than commonly cited in Cretaceous studies. A high fractionation factor is consistent with high rates of vapor export and a vigorous hydrological cycle and, like the Sr isotopes, implies limited connectivity among the individual basins of the Early Cretaceous proto-Atlantic ocean.
Resumo:
A comprehensive (mineralogical, geochronological, and geochemical) study of zircons from an eclogitized gabbronorite dike was carried out in order to identify reliable indicators (mineralogical and geochronological) of genesis of the zircons in their various populations and, correspondingly, ages of certain geological events (magmatic crystallization of the gabbroids, their eclogitization, and overprinted retrograde metamorphism). Three populations of zircons separated from two rock samples comprised xenogenic, magmatic (gabbroic), and metamorphic zircons, with the latter found exclusively in the sample of retrograded eclogitized gabbroids. Group I zircons are xenogenic and have a Meso- to Neoarchean age. Mineral inclusions in them (quartz, apatite, biotite, and chlorite) are atypical of gabbroids, and geochemistry of these zircons is very diverse. Group II zircons contain mineral inclusions of ortho- and clinopyroxene and are distinguished for their very high U, Th, Pb, and REE concentrations and Th/U ratios. These zircons formed during the late magmatic crystallization of the gabbroids at temperatures of 1150-1160°C, and their U-Pb age 2389±25 Ma corresponds to this process. Eclogite mineral assemblages crystallized shortly after the magmatic process, as follows from the fact that marginal portions of prismatic zircons contain clinopyroxene inclusions with elevated contents of the jadeite end-member. Group III zircons contain rare amphibole and biotite inclusions and have low Ti, Y, and REE concentrations, low Th/U ratios, high Hf concentrations, contain more HREE than LREE, and have U-Pb age 1911±9.5 Ma, which corresponds to age of overprinted amphibolite-facies metamorphism.
Resumo:
Pliocene vegetation dynamics and climate variability in West Africa have been investigated through pollen and XRF-scanning records obtained from sediment cores of ODP Site 659 (18°N, 21°W). The comparison between total pollen accumulation rates and Ti/Ca ratios, which is strongly correlated with the dust input at the site, showed elevated aeolian transport of pollen during dusty periods. Comparison of the pollen records of ODP Site 659 and the nearby Site 658 resulted in a robust reconstruction of West African vegetation change since the Late Pliocene. Between 3.6 and 3.0 Ma the savannah in West Africa differed in composition from its modern counterpart and was richer in Asteraceae, in particular of the Tribus Cichorieae. Between 3.24 and 3.20 Ma a stable wet period is inferred from the Fe/K ratios, which could stand for a narrower and better specified mid-Pliocene (mid-Piacenzian) warm time slice. The northward extension of woodland and savannah, albeit fluctuating, was generally greater in the Pliocene. NE trade wind vigour increased intermittently around 2.7 and 2.6 Ma, and more or less permanently since 2.5 Ma, as inferred from increased pollen concentrations of trade wind indicators (Ephedra, Artemisia, Pinus). Our findings link the NE trade wind development with the intensification of the Northern Hemisphere glaciations (iNHG). Prior to the iNHG, little or no systematic relation could be found between sea surface temperatures of the North Atlantic with aridity and dust in West Africa.
Resumo:
Melt rate and surface temperature on the Greenland ice sheet are parameterized in terms of snow accumulation, mean annual air temperatur and mean July air temperature. Melt rates are calculated using positive degree-days, and firn warming (i.e. the positive deviation of the temperature at 10-15 m depth from the mean annual air temperature) is estimated from the calculated amount of refrozen melt water in the firn. A comparison between observed and calculated melt rates shows that the parameterization provides a reasonable estimate of the present ablation rates in West Greenland between 61°N and 76°N. The average equilibrium line elevation is estimated to be about 1150 m and 1000 m for West and East Greenland respectively, which is several hundred meter lower than previous estimates. However, the total annual ablation from the ice sheet is found to be about 280 km**3 of water per year which agrees well with most other estimates. The melt-rate model predicts significant melting and consequently significant firn warming even at the highest elevations of the South Greenland ice sheet, whereas a large region of central Greenland north of 70° N experiences little or no summer melting. This agrees with the distribution of the dry snow facics as given by BENSON (1962).
Resumo:
The paper is based on new results of melt inclusion studies in minerals. Physicochemical and geochemical parameters of plateau basalt magmatic systems of the Siberian Platform and Ontong Java Plateau (Pacific Ocean) have been established. The studied melts are enriched in Fe. That differs them from magmatic melts of mid-ocean ridges (MOR). A comparative analysis of data on inclusions has shown a similarity of continental and oceanic plateau basalt magmatic systems. They considerably differ from those of MOR and intraplate oceanic islands. Crystallization of oceanic plateau basalts took place at lower temperatures and pressures as compared with similar rocks of the Siberian Platform. The data on inclusions evidence that the melts of the Siberian Platform and the Malaita Island underwent a serious evolution in contrast to magmas of the Nauru Basin that have more stable geochemical parameters. The most fractionated low-temperature high-Fe magmas with elevated contents of trace and rare-earth elements occur in the Malaita Island (Ontong Java Plateau) magmatic system.
Resumo:
Due to its strong gradient in salinity and small temperature gradient the Mediterranean provides an ideal setting to study the impact of salinity on the incorporation of Mg into foraminiferal tests. We have investigated tests of Globorotalia inflata and Globigerina bulloides in plankton tow and core top samples from the Western Mediterranean using ICP-OES for bulk analyses and LA-ICP-MS for analyses of individual chambers in single specimens. Mg/Ca observed in G. inflata are consistent with existing calibrations, whereas G. bulloides had significantly higher Mg/Ca than predicted, particularly in core top samples from the easterly stations. Scanning Electron Microscopy and Laser Ablation ICP-MS revealed secondary overgrowths on some tests, which could explain the observed high core top Mg/Ca. We suggest that the Mediterranean intermediate and deep water supersaturated with respect to calcite cause these overgrowths and therefore increased bulk Mg/Ca. However, the different species are influenced by diagenesis to different degrees probably due to different test morphologies. Our results provide new perspectives on reported anomalously high Mg/Ca in sedimentary foraminifera and the applicability of the Mg/Ca paleothermometry in high salinity settings, by showing that (1) part of the signal is generated by precipitation of inorganic calcite on the foraminifer test due to increased calcite saturation state of the water and (2) species with high surface-to-volume shell surfaces are potentially more affected by secondary Mg-rich calcite encrustation.