453 resultados para Drill, hydraulic


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nine holes were drilled with a submersible hydraulic drill into the slopes and reef flats of the Caubyan and Calituban reefs as well as of Olango Flat. The maximum depth of core penetration was 11 m. 14C ages showed that the Caubyan and Calituban reefs were formed within the last 6,000 years. Corals settled on a pre-existing relief parallel to the island of Bohol, building a framework for other carbonate-producing organisms. The reef flat south of Olango has a different structure. Formation took place during a Pleistocene high sea level, e.g. 125,000 years ago.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 245-year coral oxygen isotope record from the northern Red Sea (Ras Umm Sidd/Egypt, ~28°N) in bimonthly resolution is presented. The mean annual coral delta18O signal apparently reflects varying proportions of both sea surface temperature and delta18Oseawater variability. In conjunction with instrumental observations of climate the coral record suggests for interannual and longer timescales that colder periods are accompanied by more arid conditions in the northern Red Sea but increased rainfall in the southeastern Mediterranean, whereas warmer periods are accompanied by decreased rainfall in the latter and less arid conditions in the northern Red Sea. A ~70-year oscillation of probably North Atlantic origin dominates the coral time series. Interannual to interdecadal variability is correlated with instrumental indices of the North Atlantic Oscillation (NAO), the El Niño-Southern Oscillation (ENSO), and North Pacific climate variability. The results suggest that these modes contributed consistently to Middle East climate variability since at least 1750, preferentially at a period of ~5.7 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stress history, permeability, and compressibility of sediments from Demerara Rise recovered during Ocean Drilling Program Leg 207 were determined using one-dimensional incremental load consolidation and low-gradient flow pump permeability tests. Relationships among void ratio, effective stress, and hydraulic conductivity are presented for sampled lithologic units and used to reconstruct effective stress, permeability, and in situ void ratio profiles for a transect of three sites across Demerara Rise. Results confirm that a significant erosional event occurred on the northeastern flank of the rise during the late Miocene, resulting in the removal of ~220 m of upper Oligocene-Miocene deposits. Although Neogene and Paleogene sediments tend to be overconsolidated, Cretaceous sediments are normally consolidated to underconsolidated, suggesting the presence of overpressure. A pronounced drop in permeability occurs at the transition from the Cretaceous black shales into the overlying Maastrichtian-upper Paleocene chalks and clays. The development of a hydraulic seal at this boundary may be responsible for overpressure in the Cretaceous deposits, leading to the lower overconsolidation ratios of these sediments. Coupled with large regional variations in sediment thickness (overburden stresses), the higher permeability overpressured Cretaceous sediments represent a regional lateral fluid conduit on Demerara Rise, possibly venting methane-rich fluids where it outcrops on the margin's northeastern flank.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the role of fluids in active accretionary prisms requires quantitative knowledge of parameters such as permeability. We report here the results of permeability tests on four samples from Ocean Drilling Program Leg 190 at the Nankai Trough accretionary prism-two from Site 1173 and two from Site 1174. Volcanic ash is present in one of the samples; otherwise, the material is hemipelagic mud. A constant-rate-of-flow technique was used at various effective pressures and rates of flow. The permeability of the four samples ranges between 10**-15 and 10**-18 m**2, with the ash-bearing sample showing the highest values.