88 resultados para Deep well injection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment cores from the Amazon deep sea fan recovered during R/V Meteor cruise 16-2 show in detail the modern areal distribution of sedimentary organic carbon, stable organic carbon isotopes of the organic matter (OM), as well as variations in the depositional processes. In addition, we studied up to 300 m long drilled sediment records recovered during ODP Leg 155 which allow evaluation of temporal variations on the Amazon fan. Our results reveal new evidence for a very rapid change of fan depositional processes and organic carbon source at times of sea-level change over the middle and lower Amazon fan. To estimate the amount of terrestrial organic carbon stored in sediments from the last glacial in the Amazon fan we used stable organic carbon isotopes of the OM (delta13Corg), organic carbon content (Corg), and age models based on oxygen isotopes, faunal data, and magnetic excursions. Following our results, the organic carbon accumulation on the Amazon deep sea fan is controlled by glacio-eustatic sea-level oscillations. Interglacial sea-level high stand sediments are dominated by marine OM whereas during glacial sea-level low stands terrestrial organic carbon is transported beyond the continental shelf through the Amazon canyon and deposited directly onto the Amazon deep sea fan. Glacial sediments of the Amazon fan stored approximately 73*10**15 g terrestrial Corg in 20,000 years or 3.7*10**12 g terrestrial Corg/yr (equivalent to 7-12% of the riverine organic carbon discharge; assuming constant paleo discharge), which is about the same amount of terrestrial organic carbon as deposited on the Amazon shelf today (3.1*10**12 g terrestrial Corg/yr or 6-10% of the modern riverine organic carbon discharge).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An inflatable drill-string packer was used at Site 839 to measure the bulk in-situ permeability within basalts cored in Hole 839B. The packer was inflated at two depths, 398.2 and 326.9 mbsf; all on-board information indicated that the packer mechanically closed off the borehole, although apparently the packer hydraulically sealed the borehole only at 398.2 mbsf. Two pulse tests were run at each depth, two constant-rate injection tests were run at the first set, and four were run at the second. Of these, only the constant-rate injection tests at the first set yielded a permeability, calculated as ranging from 1 to 5 * 10**-12 m**2. Pulse tests and constant-rate injection tests for the second set did not yield valid data. The measured permeability is an upper limit; if the packer leaked during the experiments, the basalt would be less permeable. In comparison, permeabilities measured at other Deep Sea Drilling Project and Ocean Drilling Program sites in pillow basalts and flows similar to those measured in Hole 839B are mainly about 10**-13 to 10**-14 m**2. Thus, if our results are valid, the basalts at Site 839 are more permeable than ocean-floor basalts investigated elsewhere. Based on other supporting evidence, we consider these results to be a valid measure of the permeability of the basalts. Temperature data and the geochemical and geotechnical properties of the drilled sediments all indicate that the site is strongly affected by fluid flow. The heat flow is very much less than expected in young oceanic basalts, probably a result of rapid fluid circulation through the crust. The geochemistry of pore fluids is similar to that of seawater, indicating seawater flow through the sediments, and sediments are uniformly underconsolidated for their burial depth, again indicating probable fluid flow. The basalts are highly vesicular. However, the vesicularity can only account for part of the average porosity measured on the neutron porosity well log; the remainder of the measured porosity is likely present as voids and fractures within and between thin-bedded basalts. Core samples, together with porosity, density, and resistivity well-log data show locations where the basalt section is thin bedded and probably has from 15% to 35% void and fracture porosity. Thus, the measured permeability seems reasonable with respect to the high measured porosity. Much of the fluid flow at Site 839 could be directed through highly porous and permeable zones within and between the basalt flows and in the sediment layer just above the basalt. Thus, the permeability measurements give an indication of where and how fluid flow may occur within the oceanic crust of the Lau Basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High biogenic sedimentation rates in the late Neogene at DSDP Site 590 (1293 m) provide an exceptional opportunity to evaluate late Neogene (late Miocene to latest Pliocene) paleoceanography in waters transitional between temperate and warm-subtropical water masses. Oxygen and carbon isotope analyses and quantitative planktonic foraminiferal data have been used to interpret the late Neogene paleoceanographic evolution of this site. Faunal and isotopic data from Site 590 show a progression of paleoceanographic events between 6.7 and 4.3 Ma, during the latest Miocene and early Pliocene. First, a permanent depletion in both planktonic and benthic foraminiferal d13C, between 6.7 and 6.2 Ma, can be correlated to the globally recognized late Miocene carbon isotope shift. Second, a 0.5 per mil enrichment in benthic foraminiferal d18O between 5.6 and 4.7 Ma in the latest Miocene to early Pliocene corresponds to the latest Miocene oxygen isotopic enrichment at Site 284, located in temperate waters south of Site 590. This enrichment in d18O coincides with a time of cool surface waters, as is suggested by high frequencies of Neogloboquadrina pachyderma and low frequencies of the warmer-water planktonic foraminifers, as well as by an enrichment in planktonic foraminiferal d18O relative to the earlier Miocene. By 4.6 Ma, benthic foraminiferal d18O values become depleted and remain fairly stable until about 3.8 Ma. The early Pliocene (~4.3 to 3.2 Ma) is marked by a significant increase in biogenic sedimentation rates (37.7 to 83.3 m/m.y.). During this time, heaviest values in planktonic foraminiferal d18O are associated with a decrease in the gradient between surface and intermediate-water d13C and d18O, a 1.0 per mil depletion in the d13C of two species of planktonic foraminifers, and a mixture of warm and cool planktonic foraminiferal elements. These data suggest that localized upwelling at the Subtropical Divergence produced an increase in surface-water productivity during the early Pliocene. A two-step enrichment in benthic foraminiferal d18O occurs in the late Pliocene sequence at Site 590. A 0.3 per mil average enrichment at about 3.6 Ma is followed by a 0.5 per mil enrichment at 2.7 Ma. These two events can be correlated with the two-step isotopic enrichment associated with late Pliocene climatic instability and the initiation of Northern Hemisphere glaciation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The location of the seaward tip of a subduction thrust controls material transfer at convergent plate margins, and hence global mass balances. At approximately half of those margins, the material of the subducting plate is completely underthrust so that no accretion or even subduction erosion takes place. Along the remaining margins, material is scraped off the subducting plate and added to the upper plate by frontal accretion. We here examine the physical properties of subducting sediments off Costa Rica and Nankai, type examples for an erosional and an accretionary margin, to investigate which parameters control the level where the frontal thrust cuts into the incoming sediment pile. A series of rotary-shear experiments to measure the frictional strength of the various lithologies entering the two subduction zones were carried out. Results include the following findings: (1) At Costa Rica, clay-rich strata at the top of the incoming succession have the lowest strength (µres = 0.19) while underlying calcareous ooze, chalk and diatomite are strong (up to µres = 0.43; µpeak = 0.56). Hence the entire sediment package is underthrust. (2) Off Japan, clay-rich deposits within the lower Shikoku Basin inventory are weakest (µres = 0.13-0.19) and favour the frontal proto-thrust to migrate into one particular horizon between sandy, competent turbidites below and ash-bearing mud above. (3) Taking in situ data and earlier geotechnical testing into account, it is suggested that mineralogical composition rather than pore-pressure defines the position of the frontal thrust, which locates in the weakest, clay mineral-rich (up to 85 wt.%) materials. (4) Smectite, the dominant clay mineral phase at either margin, shows rate strengthening and stable sliding in the frontal 50 km of the subduction thrust (0.0001-0.1 mm/s, 0.5-25 MPa effective normal stress). (5) Progressive illitization of smectite cannot explain seismogenesis, because illite-rich samples also show velocity strengthening at the conditions tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A synoptic review of the studies of well-known occurrences of palagonite tuffs is presented. Included are palagonite tuffs from Iceland, and pillow-lava palagonite complexes from Columbia River basalts and from the central Oregon coast. Additional petrologic and x-ray defraction data for selected samples are presented. Petrologic evidence shows that basaltic glass of aqueous tuffs and breccias consists of sideromelane, which is susceptible to palagonitization. It is shown that palagonitization is a selective alteration process, involving hydration, oxidation and zeolitization. Some of the manganese nodules dredged from the Pacific Ocean floor contain nucleus of palagonite-tuff breccias or of zeolite. A brief megascopic and microscopic description of nodules from the south Pacific, the Mendocino ridge and the 'Horizon' Nodule from the north Pacific is presented. Petrographic studies of palagonite-tuff breccias of manganese nodules and other palagonites suggest that migration and segregation of metallic elements occur during and subsequent to palagonitization. During the palagonitization of sideromelane, nearly 30 percent of sea water is absorbed. The hydration of sideromelane is also accompanied by oxidation of iron and other elements. These oxides may be released either in colloidal form or in true solution and tend to precipitate first from the unstable palagonite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment samples were collected from the rim of a large vesicomyid clam colony in the Japan Deep Sea Trench. Immediately after sample recovery onboard, the sediment core was sub-sampled for ex situ rate measurements. Sulfate reduction and anaerobic oxidation of methane were measured ex situ by the whole core injection method with three replicate measurements for each method. We incubated the samples at in situ temperature (1.5°C) for 48 hours with either 14C-methane (dissolved in water, 2.5 kBq) or carrier-free 35S-sulfate (dissolved in water, 50 kBq). Sediment was fixed in 25 ml sodium hydroxide (NaOH) solution (2.5%, w/v) or 20 ml ZnAc solution (20%, w/v) for AOM or SR, respectively. Turnover rates were measured as previously described (Kallmeyer et al., 2004; Treude et al., 2003).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have assessed the reliability of several foraminifer-hosted proxies of the ocean carbonate system (d11B, B/Ca, and U/Ca) using Holocene samples from the Atlantic and Pacific oceans. We examined chemical variability over a range of test sizes for two surface-dwelling foraminifers (Globigerinoides sacculifer and Globigerinoides ruber). Measurements of d11B in G. ruber show no significant relationship with test size in either Atlantic or Pacific sites and appear to provide a robust proxy of surface seawater pH. Likewise there is no significant variability in the d11B of our Atlantic core top G. sacculifer, but we find that d11B increases with increasing test size for G. sacculifer in the Pacific. These systematic differences in d11B are inferred to be a consequence of isotopically light gametogenic calcite in G. sacculifer and its preferential preservation during postdepositional dissolution. The trace element ratio proxies of ocean carbonate equilibria, U/Ca and B/Ca, show systematic increases in both G. ruber and G. sacculifer with increasing test size, possibly as a result of changing growth rates. This behavior complicates their use in paleoceanographic reconstructions. In keeping with several previous studies we find that Mg/Ca ratios increase with increasing size fraction in our well-preserved Atlantic G. sacculifer but not in G. ruber. In contrast to previous interpretations we suggest that these observations reflect a proportionally larger influence of compositionally distinct gametogenic calcite in small individuals compared to larger ones. As with d11B this influences G. sacculifer but not G. ruber, which has negligible gametogenic calcite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxygen isotopes ratios of benthic foraminifera and detailed radiocarbon ages of the organic matter of an over 15 m long sediment core from the outer Niger delta allow us to date the oxygen isotope stage boundaries 1/2 to 11500 (+/- 650) years BP, 2/3 to approximately 23000 (+/- 2000) years BP. The composition of the predominantly terrigenous clays and accessory pelagic fossils reflects the evolution of the climate over the southwestern Sahel zone and the response of the Eastern Tropical Atlantic to these climatic fluctuations during the Late Quaternary. The dilution of the pelagic fossil concentrations by the terrigenous material and the oxygen isotopes ratios of planktonic foraminifera indicate large fluctuations in the freshwater discharge from the Niger, with high precipitations over the drainage area of this river from 4500 (+/- 300) to 11500 (+/- 650) years BP and from 11800 (+(- 600) to 13000 (+/- 600) years BP while the time intervals in between were as dry as today. Relative increase of kaolinite during wet phases and the association of smectite, chlorite and attapulgite during dry ones characterize the response of the weathering in the Niger drainage basins to the climatic fluctuations. The occurrence of 10-14 A mixed-layers prior to 26000 years BP is correlated with moderate alteration of the crystalline substratum outcrops from the middle-lower part of the Niger Basin. High quartz concentrations are particularly typical for the transition between oxygen isotope stages 1 and 2 at the inception of heavy precipitations in the southern Sahel zone. Sedimentation rates were quite constant, 30-35 cm/1000 years; they became unusually large at the beginning of the Holocene from 10900 (+/- 650) to 11500 (+/- 650) years BP where they reached more than 600 cm/1000 years. Bottom waters around 1100 m depth in the Gulf of Guinea responded to changes in paleo-oceanography of the entire Atlantic Ocean as well as to local influences. Abnormal carbon isotopes ratios and the drastic changes from a highly diversified fauna (during stages 2 and 3. and during the last part of stage 1 after approx. 7000 years BP) to a poorly diversified fauna in the intervenin time span point to the development of a local benthic environment which cannot easily be compared with the corresponding continental and slope environments of the entire Atlantic Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new genus Abyssogena is established for A. phaseoliformis (Métivier, Okutani & Ohta, 1986) and A. kaikoi (Okutani & Métivier, 1986), which were previously assigned to the genus Calyptogena Dall, 1891, and also for two new species, A. southwardae and A. novacula. The most characteristic features of Abyssogena are an elongate shell up to about 280 mm in length; a pallial line starting from the ventral margin of the anterior adductor scar; secondary pallial attachment scars developed dorsal to the pallial line; radially arranged hinge teeth with a reduced anterior cardinal tooth in the right valve; and presence of an inner ctenidial demibranch only. Abyssogena occurs in deep water from 2,985 to 6,400 m and is distributed in the Pacific and Atlantic Oceans at cold seeps along continental margins and hydrothermal vents at mid-oceanic ridges. Some species have a remarkably wide geographic distribution; A. southwardae is present throughout the Atlantic and A. phaseoliformis is present in Japan, Kuril-Kamchatka, as well as Aleutian Trenches. No fossils of Abyssogena are known.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iron reduction in subseafloor sulfate-depleted and methane-rich marine sediments is currently a subject of interest in subsurface geomicrobiology. While iron reduction and microorganisms involved have been well studied in marine surface sediments, little is known about microorganisms responsible for iron reduction in deep methanic sediments. Here, we used quantitative PCR (Q-PCR)-based 16S rRNA gene copy numbers and pyrosequencing-based relative abundances of bacteria and archaea to investigate covariance between distinct microbial populations and specific geochemical profiles in the top 5 m of sediment cores from the Helgoland mud area, North Sea. We found that gene copy numbers of bacteria and archaea were specifically higher around the peak of dissolved iron in the methanic zone (250-350 cm. The higher copy numbers at these depths were also reflected by the relative sequence abundances of members of the candidate division JS1, methanogenic and Methanohalobium/ANME-3 related archaea. The distribution of these populations was strongly correlated to the profile of pore-water Fe2+ while that of Desulfobacteraceae corresponded to the pore-water sulfate profile. Furthermore, specific JS1 populations also strongly co-varied with the distribution of Methanosaetaceae in the methanic zone. Our data suggest that the interplay among JS1 bacteria, methanogenic archaea and Methanohalobium/ANME-3-related archaea may be important for iron reduction and methane cycling in deep methanic sediments of the Helgoland mud area and perhaps in other methane-rich depositional environments. .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent revisions of the geological time scale by Kent and Gradstein (in press) suggest that, on the average, Cretaceous magnetic anomalies are approximately 10 m.y. older than in Larson and Hilde's (1975) previous time scale. These revised basement ages change estimates for the duration of alteration in the ocean crust, based on the difference between secondary-mineral isochron ages and magnetic isochron-crustal ages, from 3 to approximately 13 m.y. In addition to the revised time scale, Burke et al.'s (1982) new data on the temporal variation of 87Sr/86Sr in seawater allow a better understanding of the timing of alteration and more realistic determinations of water/rock ratios during seawater-basalt interaction. Carbonates from all DSDP sites which reached Layer 2 of Atlantic crust (Sites 105, 332, 417, and 418) are deposited within 10-15 m.y. of crustal formation from solutions with 87Sr/86Sr ratios identical to unaltered or contemporaneous seawater. Comparisons of the revised seawater curve with the 87Sr/86Sr of basement carbonates is consistent with a duration of approximately 10-15 m.y. for alteration in the ocean crust. Our preliminary Sr and 87Sr/86Sr data for carbonates from Hole 504B, on 5.9-m.y.-old crust south of the Costa Rica Rift, suggest that hydrous solutions from which carbonates precipitated contained substantial amounts of basaltic Sr. For this reason, carbonate 87Sr/86Sr cannot be used to estimate the duration of alteration at this site. A basalt-dominated alteration environment at Hole 504B is consistent with heat-flow evidence which indicates rapid sediment burial of crust at the Costa Rica Rift, sealing it from access by seawater and resulting in unusually low water/rock ratios during alteration.