85 resultados para DARK MATTER EXPERIMENTS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The calcifying phytoplankton species, coccolithophores, have their calcified coccoliths around the cells, however, their physiological roles are still unknown. Here, we hypothesized that the coccoliths may play a certain role in reducing solar UV radiation (UVR, 280-400 nm) and protect the cells from being harmed. Cells of Emiliania huxleyi with different thicknesses of the coccoliths were obtained by culturing them at different levels of dissolved inorganic carbon and their photophysiological responses to UVR were investigated. Although increased dissolved inorganic carbon decreased the specific growth rate, the increased coccolith thickness significantly ameliorated the photoinhibition of PSII photochemical efficiency caused by UVR. Increase by 91% in the coccolith thickness led to 35% increase of the PSII yield and 22% decrease of the photoinhibition of the effective quantum yield by UVR. The coccolith cover reduced more UVA (320-400 nm) than UVB (280-315 nm), leading to less inhibition per energy at the UV-A band.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the effect of elevated partial pressure of CO2 (pCO2) on the photosynthesis and growth of four phylotypes (ITS2 types A1, A13, A2, and B1) from the genus Symbiodinium, a diverse dinoflagellate group that is important, both free-living and in symbiosis, for the viability of cnidarians and is thus a potentially important model dinoflagellate group. The response of Symbiodinium to an elevated pCO2 was phylotype-specific. Phylotypes A1 and B1 were largely unaffected by a doubling in pCO2 in contrast, the growth rate of A13 and the photosynthetic capacity of A2 both increased by ~ 60%. In no case was there an effect of ocean acidification (OA) upon respiration (dark- or light-dependent) for any of the phylotypes examined. Our observations suggest that OA might preferentially select among free-living populations of Symbiodinium, with implications for future symbioses that rely on algal acquisition from the environment (i.e., horizontal transmission). Furthermore, the carbon environment within the host could differentially affect the physiology of different Symbiodinium phylotypes. The range of responses we observed also highlights that the choice of species is an important consideration in OA research and that further investigation across phylogenetic diversity, for both the direction of effect and the underlying mechanism(s) involved, is warranted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coccolithophore Calcidiscus leptoporus was grown in batch culture under nitrogen (N) as well as phosphorus (P) limitation. Growth rate, particulate inorganic carbon (PIC), particulate organic carbon (POC), particulate organic nitrogen (PON), and particulate organic phosphorus (POP) production were determined and coccolith morphology was analysed. While PON production decreased by 70% under N-limitation and POP production decreased by 65% under P-limitation, growth rate decreased by 33% under N- as well as P-limitation. POC as well as PIC production (calcification rate) increased by 27% relative to the control under P-limitation, and did not change under N-limitation. Coccolith morphology did not change in response to either P or N limitation. While these findings, supported by a literature survey, suggest that coccolith morphogenesis is not hampered by either P or N limitation, calcification rate might be. The latter conclusion is in apparent contradiction to our data. We discuss the reasons for this inference.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of ocean acidification on the life-cycle stages of the coccolithophore Emiliania huxleyi and their by light were examined. Calcifying diploid and noncalcifying haploid cells (Roscoff culture collection 1216 and 1217) were acclimated to present-day and elevated CO2 partial pressures (PCO2; 38.5 vs. 101.3 Pa, ., 380 vs. 1000 matm) under low and high light (50 vs. 300 mmol photons m-2 s-1). Growth rates as well as quotas and production rates of C and N were measured. Sources of inorganic C for biomass buildup were using a 14C disequilibrium assay. Photosynthetic O2 evolution was measured as a function of dissolved inorganic C and light by means of membrane-inlet mass spectrometry. The diploid stage responded to elevated PCO2 by shunting resources from the production of particulate inorganic C toward organic C yet keeping the production of total particulate C constant. As the effect of ocean acidification was stronger under low light, the diploid stage might be less affected by increased acidity when energy availability is high. The haploid stage maintained elemental composition and production rates under elevated PCO2. Although both life-cycle stages involve different ways of dealing with elevated PCO2, the responses were generally modulated by energy availability, being typically most pronounced under low light. Additionally, PCO2 responses resembled those induced by high irradiances, indicating that ocean acidification affects the interplay between energy-generating processes (photosynthetic light reactions) and processes competing for energy (biomass buildup and calcification). A conceptual model is put forward explaining why the magnitude of single responses is determined by energy availability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uptake of anthropogenic CO2 by the oceans is altering seawater chemistry with potentially serious consequences for coral reef ecosystems due to the reduction of seawater pH and aragonite saturation state (omega arag). The objectives of this long-term study were to investigate the viability of two ecologically important reef-building coral species, massive Porites sp. and Stylophora pistilata, exposed to high pCO2(or low pH) conditions and to observe possible changes in physiologically related parameters as well as skeletal isotopic composition. Fragments of Porites sp. and S. pistilata were kept for 6-14 months under controlled aquarium conditions characterized by normal and elevated pCO2 conditions, corresponding to pHTvalues of 8.09, 7.49, and 7.19, respectively. In contrast with shorter, and therefore more transient experiments, the long experimental timescale achieved in this study ensures complete equilibration and steady state with the experimental environment and guarantees that the data provide insights into viable and stably growing corals. During the experiments, all coral fragments survived and added new skeleton, even at seawater omega arag <1, implying that the coral skeleton is formed by mechanisms under strong biological control. Measurements of boron (B), carbon (C) and oxygen (O) isotopic composition of skeleton, C isotopic composition of coral tissue and symbiont zooxanthellae, along with physiological data (such as skeletal growth, tissue biomass, zooxanthellae cell density and chlorophyll concentration) allow for a direct comparison with corals living under normal conditions and sampled simultaneously. Skeletal growth and zooxanthellae density were found to decrease, whereas coral tissue biomass (measured as protein concentration) and zooxanthellae chlorophyll concentrations increased under high pCO2 (low pH) conditions. Both species showed similar trends of delta11B depletion and delta18O enrichment under reduced pH, whereas the delta13C results imply species-specific metabolic response to high pCO2 conditions. The skeletal delta11B values plot above seawater delta11B vs. pH borate fractionation curves calculated using either the theoretically derived deltaB value of 1.0194 (Kakihana et al., Bull. Chem. Soc. Jpn. 50(1977), 158) or the empirical deltaB value of 1.0272 (Klochko et al., EPSL 248 (2006), 261). However, the effective deltaB must be greater than 1.0200 in order to yield calculated coral skeletal delta11B values for pH conditions where omega arag >1. The delta11B vs. pH offset from the literature seawater delta11B vs. pH fractionation curves suggests a change in the ratio of skeletal material laid down during dark and light calcification and/or an internal pH regulation, presumably controlled by ion-transport enzymes. Finally, seawater pH significantly influences skeletal delta13C and delta18O. This must be taken into consideration when reconstructing paleo-environmental conditions from coral skeleton

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future scenarios for the oceans project combined developments of CO2 accumulation and global warming and their impact on marine ecosystems. The synergistic impact of both factors was addressed by studying the effect of elevated CO2 concentrations on thermal tolerance of the cold-eurythermal spider crab Hyas araneus from the population around Helgoland. Here ambient temperatures characterize the southernmost distribution limit of this species. Animals were exposed to present day normocapnia (380 ppm CO2), CO2 levels expected towards 2100 (710 ppm) and beyond (3000 ppm). Heart rate and haemolymph PO2 (PeO2) were measured during progressive short term cooling from 10 to 0°C and during warming from 10 to 25°C. An increase of PeO2 occurred during cooling, the highest values being reached at 0°C under all three CO2 levels. Heart rate increased during warming until a critical temperature (Tc) was reached. The putative Tc under normocapnia was presumably >25°C, from where it fell to 23.5°C under 710 ppm and then 21.1°C under 3000 ppm. At the same time, thermal sensitivity, as seen in the Q10 values of heart rate, rose with increasing CO2concentration in the warmth. Our results suggest a narrowing of the thermal window of Hyas araneus under moderate increases in CO2 levels by exacerbation of the heat or cold induced oxygen and capacity limitation of thermal tolerance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing atmospheric carbon dioxide threatens to decrease pH in the world's oceans. Coastal and estuarine calcifying organisms of significant ecological and economical importance are at risk; however, several biogeochemical processes drive pH in these habitats. In particular, coastal and estuarine sediments are frequently undersaturated with respect to calcium carbonate due to high rates of organic matter remineralization, even when overlying waters are saturated. As a result, the post-larval stages of infaunal marine bivalves must be able to deposit new shell material in conditions that are corrosive to shell. We measured calcification rates on the hard clam, Mercenaria spp.,in 5 post-larval size classes (0.39, 0.56, 0.78, 0.98, and 2.90 mm shell height) using the alkalinity anomaly method. Acidity of experimental water was controlled by bubbling with air-CO2 blends to obtain pH values of 8.02, 7.64, and 7.41, corresponding to pCO2 values of 424, 1120, and 1950 µatm. These pH values are typical of those found in many near-shore terrigenous marine sediments. Our results show that calcification rate decreased with lower pH in all 5 size classes measured. We also found a significant effect of size on calcification rate, with the smaller post-larval sizes unable to overcome dissolution pressure. Increased calcification rate with size allowed the larger sizes to overcome dissolution pressure and deposit new shell material under corrosive conditions. Size dependency of pH effects on calcification is likely due to organogenesis and developmental shifts in shell mineralogy occurring through the post-larval stage. Furthermore, we found significantly different calcification rates between the 2 sources of hard clams we used for these experiments, most likely due to genotypic differences. Our findings confirm the susceptibility of the early life stages of this important bivalve to decreasing pH and reveal mechanisms behind the increased mortality in post-larval juvenile hard clams related to dissolution pressure, that has been found in previous studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this laboratory study, we monitored the buildup of biomass and concomitant shift in seawater carbonate chemistry over the course of a Trichodesmium bloom under different phosphorus (P) availability. During exponential growth, dissolved inorganic carbon (DIC) decreased, while pH increased until maximum cell densities were reached. Once P became depleted, DIC decreased even further and total alkalinity (TA) dropped, accompanied by precipitation of aragonite. Under P-replete conditions, DIC increased and TA remained constant in the postbloom phase. A diffusion-reaction model was employed to estimate changes in carbonate chemistry of the diffusive boundary layer. This study demonstrates that Trichodesmium can induce precipitation of aragonite from seawater and further provides possible explanations about underlying mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of ocean acidification and increased water temperature on marine ecosystems, in particular those involving calcifying organisms, has been gradually recognised. We examined the individual and combined effects of increased pCO2 (180 ppmV CO2, 380 ppmV CO2 and 750 ppmV CO2 corresponding to past, present and future CO2 conditions, respectively) and temperature (13 °C and 18 °C) during the exponential growth phase of the coccolithophore E. huxleyi using batch culture experiments. We showed that cellular production rate of Particulate Organic Carbon (POC) increased from the present to the future CO2 treatments at 13 °C. A significant effect of pCO2 and of temperature on calcification was found, manifesting itself in a lower cellular production rate of Particulate Inorganic Carbon (PIC) as well as a lower PIC:POC ratio at future CO2 levels and at 18 °C. Coccosphere-sized particles showed a size reduction with both increasing temperature and CO2concentration. The influence of the different treatments on coccolith morphology was studied by categorizing SEM coccolith micrographs. The number of well-formed coccoliths decreased with increasing pCO2 while temperature did not have a significant impact on coccolith morphology. No interacting effects of pCO2 and temperature were observed on calcite production, coccolith morphology or on coccosphere size. Finally, our results suggest that ocean acidification might have a larger adverse impact on coccolithophorid calcification than surface water warming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigates the combined effect of phosphorous limitation, elevated partial pressure of CO2 (pCO2) and temperature on a calcifying strain of Emiliania huxleyi (PML B92/11) by means of a fully controlled continuous culture facility. Two levels of phosphorous limitation were consecutively applied by renewal of culture media (N:P = 26) at dilution rates (D) of 0.3 d- and 0.1 d-1. CO2 and temperature conditions were 300, 550 and 900 µatm pCO2 at 14 °C and 900 µatm pCO2 at 18 °C. In general, the steady state cell density and particulate organic carbon (POC) production increased with pCO2, yielding significantly higher concentrations in cultures grown at 900 µatm pCO2 compared to 300 and 550 µatm pCO2. At 900 µatm pCO2, elevation of temperature as expected for a greenhouse ocean, further increased cell densities and POC concentrations. In contrast to POC concentration, C-quotas (pmol C cell-1) were similar at D = 0.3 d-1 in all cultures. At D = 0.1 d-1, a reduction of C-quotas by up to 15% was observed in the 900 µatm pCO2 at 18 °C culture. As a result of growth rate reduction, POC:PON:POP ratios deviated strongly from the Redfield ratio, primarily due to an increase in POC. Ratios of particulate inorganic and organic carbon (PIC:POC) ranged from 0.14 to 0.18 at D = 0.3 d-1, and from 0.11 to 0.17 at D = 0.1 d-1, with variations primarily induced by the changes in POC. At D = 0.1 d-1, cell volume was reduced by up to 22% in cultures grown at 900 µatm pCO2. Our results indicate that changes in pCO2, temperature and phosphorus supply affect cell density, POC concentration and size of E. huxleyi (PML B92/11) to varying degrees, and will likely impact bloom development as well as biogeochemical cycling in a greenhouse ocean.