87 resultados para Cupressaceae
Resumo:
The pollen record of three marine late Quaternary cores off Senegal shows a juxtaposition of Mediterranean, Northern Saharan, Central Saharan elements, which are considered transported by the trade winds from a winter-rainfall area, and Sahelian, Soudanese, Soudano-Guinean elements, considered transported both by winds and mostly by the Senegal River, and coming from the monsoonal, summer tropical rainfall area of southern West Africa. Littoral vegetation is either the edaphically dry and saline Chenopodiaceae from sebkhas at the time of the main regression, or the warm tropical humid mangrove with Rhizophora during the humid optimum period. Four stratigraphic zones reflect, from basis to top: Zone 4. A semi-arid period with a balanced pollen input. Zone 3. A very arid period with the disappearance of monsoonal pollen, probably from the disappearance of the Senegal River, a very saline littoral plain with Chenopodiaceae, a larger input of northern Saharan pollen from intensified trade winds. Zone 2. A quite humid period, much more so than today, very suddenly established, with a northward extension of the monsoonal areas, a rich littoral mangrove, and weakening of the trade winds. Zone l. A slow and steady evolution toward the present semi-humid conditions with regression of the mangrove, and of the monsoonal areas toward the south. Tentative datations and correlations with the Tchad area suggested: zone 4: 22,500 to 19,000 years BP; zone 3: 19,000 to 12,500 years BP; zone 2: 12,500 to 5,500 years BP; zone 1: 5,500 years BP to top of core. Dinoflagellate cysts display a tropical assemblage with mostly estuarine neritic elements and also a weak oceanic component, mostly in the lower slope core 47. Cosmopolitan taxa dominate the assemblage and only a few species point to more specialized environments. Quantitative variations of the assemblage are the basis of stratigraphy which is not similar to the pollen stratigraphy, and an inshore-outshore gradient has to be taken into account to correlate the three cores.
Resumo:
Pollen floras were obtained from Miocene sediments recovered at four sites drilled during Ocean Drilling Program Leg 127. The local pollen floras of each site were correlated to the standard pollen zones of northeast Japan by using the concept of the essential members for each pollen zone. At Site 797, the complete floral range was obtained for recognition of the NP2 zone and the pollen components of the NP1 zone were also clarified continuously. The ages of the boundaries between pollen zones NP4/NP3, NP3/NP2, and NP2/NP1 are estimated to be about 7 Ma, 13 Ma, and 17-18.5 Ma, respectively. Even in the same pollen zone, the ratios of major pollen taxa vary with the location. This variation is expressed on maps representing two different times during the Miocene.
Paleoclimate reconstruction from Miocene macroflora in Kazakhstan compiled from various publications
Resumo:
25 datasets (13 fossil leaf and pollen assemblages, 12 quantitative palaeoclimatic datasets) are provided in order to analyse Early Miocene palaeoclimate in Kazakhstan. The rich fossil record in Kazakhstan documents that during the Oligocene and Early Miocene this area in Central Eurasia was densely forested with warm-temperate deciduous trees and shrubs of the so-called "Turgayan flora". 29 fossil floras from 13 localities have been selected for a quantitative analysis of the Aquitanian (early Early Miocene) climate situation in Kazakhstan. The assessed mean annual temperatures generally place around 15 °C, while values of mean annual precipitation are of about 1000 mm. In combination with several other climate parameters estimated (temperatures of warmest and coldest months, precipitation rates of wettest, driest and warmest months), these data reflect uniform climatic conditions over several thousands of square kilometres. Data of temperature parameters show slight spatial differentiations, with generally cooler mean annual temperatures and higher seasonality (i.e. warmer summers and colder winters) in the north-eastern part of the study area compared with the south-western area around Lake Aral. As compared with palaeoclimate estimates for the European and East Asian Aquitanian, the central part of the Eurasian continent reveals evident signals of higher seasonality and slightly increased continentality.
Resumo:
Fluxes of airborne freshwater diatoms (FD), phytoliths (PH), and pollen grains (PO) collected with sediment traps off Cape Blanc, northwest Africa, from 1988 till 1991 are presented. Both continental rainfall variations and wind mean strength and direction play a key role in the temporal fluctuations of the fluxes of eolian traces in the pelagic realm. Drier conditions in Northern Africa in 1987 could have preceded the high lithogenic input and moderate FD flux in 1988. The PH peak in summer 1988 was probably caused by increased wind velocity. Wetter rainy seasons of 1988/89 might have promoted a significant pollen production in summer 1989, and FD in late 1989 and early 1990, as well as contributed to the reduction of the lithogenic flux in 1989/90. Decreased fluxes of FD, PH and PO, and higher contribution of the 6-11 µm lithogenic fraction in 1991 would mainly reflect minor intensity and decreased amount of continental trade winds. Air-mass backward trajectories confirm that the Saharan Air Layer is predominantly involved in the spring/summer transport. Trade winds play a decisive role in the fall/winter months, but also contribute to the transport during late spring/summer. Origin of wind trajectories does not support a direct relationship between transporting wind-layers and material source areas in Northern Africa. High winter fluxes of eolian tracers and high amount of trade winds with continental origin in summer warn against a simplistic interpretation of the seasonal eolian signal preserved in the sediments off Cape Blanc, and the wind layer involved in its transport.
Resumo:
Palynological investigation of the marine core, GeoB1008-3, from near the mouth of the Congo river (6°35.6'S/10°19.1'E), provides information about the changes in vegetation and climate in West Equatorial Africa during the last 190 ka. The pollen diagram is divided into zones 1-6 which are considered to correspond in time with the marine isotope stages 1-6. Oscillations in temperature and moisture are indicated during the cold stage 6. During stage 5, two cooler periods (5d and 5b) can be shown with an expansion of Podocarpus forests to lower elevations on the expense of lowland rain forest. Extended mangrove swamps existed along the coast in times of high sea level (stages 5 and 1).