944 resultados para Coring


Relevância:

10.00% 10.00%

Publicador:

Resumo:

here is controversy over the role of marine methane hydrates in atmospheric methane concentrations and climate change during the last glacial period. In this study of two sediment cores from the southeast Bering Sea (700 m and 1467 m water depth), we identify multiple episodes during the last glacial period of intense methane flux reaching the seafloor. Within the uncertainty of the radiocarbon age model, the episodes are contemporaneous in the two cores and have similar timing and duration as Dansgaard-Oeschger events. The episodes are marked by horizons of sediment containing 13C-depleted authigenic carbonate minerals; 13C-depleted archaeal and bacterial lipids, which resemble those found in ANME-1 type anaerobic methane oxidizing microbial consortia; and changes in the abundance and species distribution of benthic foraminifera. The similar timing and isotopic composition of the authigenic carbonates in the two cores is consistent with a region-wide increase in the upward flux of methane bearing fluids. This study is the first observation outside Santa Barbara Basin of pervasive, repeated methane flux in glacial sediments. However, contrary to the "Clathrate Gun Hypothesis" (Kennett et al., 2003), these coring sites are too deep for methane hydrate destabilization to be the cause, implying that a much larger part of the ocean's sedimentary methane may participate in climate or carbon cycle feedback at millennial timescales. We speculate that pulses of methane in these opal-rich sediments could be caused by the sudden release of overpressure in pore fluids that builds up gradually with silica diagenesis. The release could be triggered by seismic shaking on the Aleutian subduction zone caused by hydrostatic pressure increase associated with sea level rise at the start of interstadials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obtaining long, continuous, and undisturbed sections of unconsolidated Neogene deep sea sedimentary sections has been limited by (1) practical length of piston cores to about 30 meters and (2) disturbance of sediment by rotary drilling with Glomar Challenger. The relatively high deposition rates of late Neogene sediments in the North Atlantic and in the Caribbean in particular has limited penetration, with conventional piston coring, to sediments not much older than late Pliocene in the Atlantic and not even through the late Pleistocene in the Caribbean. Rotary drilling has penetrated much older sediments in both areas, but the cores suffered extensive drilling disturbance that seriously degrades the Paleomagnetism of the material. Utilization of the hydraulic piston corer on the Challenger combines the advantage of a generally undisturbed recovery and great penetration to produce long, relatively undisturbed sections of late Neogene and Quaternary sediments suitable for paleomagnetic studies. In this chapter we present paleomagnetic data from Site 502. We tried to determine relative azimuthal orientation of successive cores (see Introduction for details). Because the low latitude of the site meant a small (inclination of about 22°) vertical component of magnetization, reversals of magnetization could easily be detected only in changes in the horizontal component, as 180° shifts in the declination direction of magnetization. Based on information from the core orienting device, a fiducial line was drawn the length of each core prior to cutting it into the standard 1.5 meter sections.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ostracods secrete their valve calcite within a few hours or days, therefore, its isotopic composition records ambient environmental conditions of only a short time span. Hydrographic changes between the calcification of individuals lead to a corresponding range (max.-min.) in the isotope values when measuring several (>=5) single valves from a specific sediment sample. Analyses of living (stained) ostracods from the Kara Sea sediment surface revealed high ranges of >2per mil of d18O and d13C at low absolute levels (d18O: <3per mil, d13C: <-3per mil) near the river estuaries of Ob and Yenisei and low ranges of not, vert, similar1per mil at higher absolute levels (d18O: 2-5.4per mil, d13C: -3 per mil to -1.5per mil) on the shelf and in submarine paleo-river channels. Comparison with a hydrographic data base and isotope measurements of bottom water samples shows that the average and the span of the ostracod-based isotope ranges closely mirror the long-term means and variabilities (standard deviation) of bottom water temperature and salinity. The bottom hydrography in the southern part of the Kara Sea shows strong response to the river discharge and its extreme seasonal and interannual variability. Less variable hydrographic conditions are indicative for deeper shelf areas to the north, but also for areas near the river estuaries along submarine paleo-river channels, which act as corridors for southward flowing cold and saline bottom water. Isotope analyses on up to five single ostracod valves per sample in the lower section (8-7 cal. ka BP) of a sediment core north of Yenisei estuary revealed d18O and d13C values which on average are lower by 0.6? in both, d18O and d13C, than in the upper core section (<5 cal. ka BP). The isotope shifts illustrate the decreasing influence of isotopically light river water at the bottom as a result of the southward retreat of the Yenisei river mouth from the coring site due to global sea level rise. However, the ranges (max.-min.) in the single-valve d18O and d13C data of the individual core samples are similar in the upper and in the lower core section, although a higher hydrographic variability is expected prior to 7 cal. ka BP due to river proximity. This lack of variability indicates the southward flow of cold, saline water along a submarine paleo-river channel, formerly existing at the core location. Despite shallowing of the site due to sediment filling of the channel and isostatic uplift of the area, the hydrographic variability at the core location remained low during the Late Holocene, because the shallowing proceeded synchronously with the retreat of the river mouth due to the global sea level rise

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During IODP Expedition 302 (Arctic Coring Expedition-ACEX), the first scientific drilling campaign in the permantly ice-covered central Arctic Ocean, a 430 m thick sequence of upper Cretaceaous to Quaternary sediments has been drilled. The lower half of this sequence is composed of organic-carbon-rich (black shale-type) sediments with total organic carbon contents of about 1-14%. Significant amounts of the organic matter preserved in these sediments is of algae-type origin and accumulated under anoxic/euxinic conditions. Here, for the first time detailed data on the source-rock potential of these black shales are presented, indicating that most of the Eocene sediments have a (fair to) good source-rock potential, prone to generate a gas/oil mixture. The source-rock potential of the Campanian and upper Paleocene sediments, on the other hand, is rather low. The presence of oil or gas already generated in situ, however, can be ruled out due to the immaturity of the ACEX sediments.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several widely correlatable intervals of laminated Thalassiothrix diatom mat deposits occur in Neogene sediments recovered from the eastern equatorial Pacific Ocean. The presence of laminated sediments in extensive areas of the deep open ocean floor raises fundamental questions concerning the cause of preservation of the laminations and the nature of the benthic environment during episodes of mat deposition. Traditional explanations for the preservation of laminations have centered on restriction of dissolved oxygen. Studies of benthic foraminifers through the laminated intervals show no evidence for an increase in absolute or relative abundance of species characteristic of a low oxygen environment, but rather a decrease in relative abundance of infaunal forms attesting to the impenetrability of the diatom meshwork formed by the interlocking Thalassiothrix frustules. These results support evidence from coring of the high tensile strength of the Thalassiothrix laminations suggesting that the diatom meshwork was of sufficient tensile strength and impenetrability to suppress infaunal benthic activity. Comparison of the relative abundances of foraminifers in the enclosing ôbackgroundö sediment of foraminifer nannofossil ooze and the laminated diatom oozes shows that some epifaunal species (e.g., Cibicides spp.) increase in relative abundance within the laminated sediment, whereas others (e.g., Epistominella exigua) show a marked decrease in relative abundance. Other species show more complex changes in abundance related to the occurrence of the laminated sediments, which may indicate a combination of controls that include the physical nature of the substrate and the amount of organic flux.