412 resultados para Code division multiple access


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A primary objective of Leg 175 was to investigate the upwelling history of the Benguela Current. Upwelling along the coast is found over the shelf in several well-established cells, as well as along the shelf-slope break, and extends over the 1000-m isobath. Streaming filaments along the coast also carry upwelled water off shore (Shannon, 1985). The upwelled nutrient-rich waters are sourced from the South Atlantic central water mass, which is a mixture of subtropical and subantarctic water masses. Below the central water mass lies Antarctic intermediate water (Shannon and Hunter, 1988, doi:10.2989/025776188784480735; Stramma and Peterson, 1989, doi:10.1175/1520-0485(1989)019<1440:GTITBC>2.0.CO;2). The upwelling system supports a robust marine community (Shannon and Pillar, 1986) where radiolarians are abundant (Bishop et al., 1978, doi:10.1016/0146-6291(78)90010-3). The endemic nature of radiolarians makes them useful in reconstructing the paleocirculation patterns. The biogeographic distribution of many species is limited by water-mass distribution. In a given geographic region, species may also have discrete depth habitats. However, their depth of occurrence can change worldwide because the depths of water masses vary with latitude (Boltovskoy, 1999). Consequently, species found at shallow depths at high latitudes (cold-water fauna) are observed deeper in the water column at lower latitudes. The low-latitude submergence of cold-water species broadens their distribution, resulting in species distributions that can cover multiple geographic regions (Kling, 1976, doi:10.1016/0011-7471(76)90880-9; Casey, doi:10.1016/0031-0182(89)90017-5; 1971; Boltovskoy, 1987, doi:10.1016/0377-8398(87)90014-4). Since radiolarian distribution is closely related to water-mass distribution and controlled by climatic conditions rather than geographic regions, similar assemblages characterize the equatorial, subtropical, transition, subpolar, and polar regions of ocean basins (Petrushevskaya, 1971a; Casey, 1989, doi:10.1016/0031-0182(89)90017-5; Boltovskoy, 1999). Numerous radiolarian species found in water masses in the Angola and Benguela Current systems have also been observed in plankton net samples, sediment traps, and surface-sediment studies in the Atlantic sector of the Southern Ocean, where they exhibited particular water-mass affinities (Abelmann, 1992a, doi:10.1007/BF00243107; Abelmann 1992b, doi:10.1007/BF00243108; Abelmann and Gowing, 1997, doi:10.1016/S0377-8398(96)00021-7). This report presents data on the radiolarian fauna recovered from Site 1082 sediments in the form of a survey of species reflecting the latitudinal migration of the Angola-Benguela Front and upwelling. The data constitute a time series of relative radiolarian abundances at very high resolution (every 20 cm) of the upper 12 m of Hole 1082A.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ostracods secrete their valve calcite within a few hours or days, therefore, its isotopic composition records ambient environmental conditions of only a short time span. Hydrographic changes between the calcification of individuals lead to a corresponding range (max.-min.) in the isotope values when measuring several (>=5) single valves from a specific sediment sample. Analyses of living (stained) ostracods from the Kara Sea sediment surface revealed high ranges of >2per mil of d18O and d13C at low absolute levels (d18O: <3per mil, d13C: <-3per mil) near the river estuaries of Ob and Yenisei and low ranges of not, vert, similar1per mil at higher absolute levels (d18O: 2-5.4per mil, d13C: -3 per mil to -1.5per mil) on the shelf and in submarine paleo-river channels. Comparison with a hydrographic data base and isotope measurements of bottom water samples shows that the average and the span of the ostracod-based isotope ranges closely mirror the long-term means and variabilities (standard deviation) of bottom water temperature and salinity. The bottom hydrography in the southern part of the Kara Sea shows strong response to the river discharge and its extreme seasonal and interannual variability. Less variable hydrographic conditions are indicative for deeper shelf areas to the north, but also for areas near the river estuaries along submarine paleo-river channels, which act as corridors for southward flowing cold and saline bottom water. Isotope analyses on up to five single ostracod valves per sample in the lower section (8-7 cal. ka BP) of a sediment core north of Yenisei estuary revealed d18O and d13C values which on average are lower by 0.6? in both, d18O and d13C, than in the upper core section (<5 cal. ka BP). The isotope shifts illustrate the decreasing influence of isotopically light river water at the bottom as a result of the southward retreat of the Yenisei river mouth from the coring site due to global sea level rise. However, the ranges (max.-min.) in the single-valve d18O and d13C data of the individual core samples are similar in the upper and in the lower core section, although a higher hydrographic variability is expected prior to 7 cal. ka BP due to river proximity. This lack of variability indicates the southward flow of cold, saline water along a submarine paleo-river channel, formerly existing at the core location. Despite shallowing of the site due to sediment filling of the channel and isostatic uplift of the area, the hydrographic variability at the core location remained low during the Late Holocene, because the shallowing proceeded synchronously with the retreat of the river mouth due to the global sea level rise