96 resultados para Co^2
Resumo:
Miocene to Pleistocene sand and sandstone were recovered at Ocean Drilling Program Site 974 in the Tyrrhenian Basin and Sites 976 and 977 in the Alboran Basin. Sand detrital modes were determined for 45 samples from these sites, as well as 10 samples of Spanish beach sand. At Site 974, the Pleistocene section includes a number of volcaniclastic (vitric ash) and terrigenous sand layers; the latter are heterogeneous and contain sedimentary and metamorphic lithic fragments. Submarine canyon and onshore drainage patterns suggest that the most likely source of this sediment is the Tiber River drainage basin in central Italy, where a Pleistocene volcanic field is superimposed on Apennine orogenic rocks. In contrast, the Miocene sand in Unit III at Site 974 may have been derived from local basement highs. The quartzolithic composition and preponderance of metamorphic and sedimentary lithic debris in sand samples from Unit II at Site 976, Unit I at Sites 977 and 978, and Unit I at Site 979 are consistent with derivation from metamorphic rocks and sedimentary cover sequences that crop out in the Betic Cordillera of southern Spain (976-978) and in the Rif of Northern Africa (979). The sedimentary to metamorphic lithic fragment ratios in these samples reflect the relative proportion of metamorphic and sedimentary rocks exposed in onshore source terranes. In contrast, the source of the few quartzose Pleistocene sands at Site 976 was likely the Flysch Trough Units that crop out near Gibraltar. The significant volcanic component in certain intervals at Sites 976 (upper Miocene) and 977 (lower Pliocene to Miocene) is consistent with widespread volcanic activity during basin inception and development. Mean sand detrital modes for sand subgroups from both the Alboran and Tyrrhenian Basin sites plot in the Recycled Orogenic and Magmatic Arc compositional fields of Dickinson et al. (1983, doi:10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2), reflecting the hybrid tectonic histories of these basins.
Resumo:
North American freshwater runoff records have been used to support the case that climate flickers were caused by shutdowns of the ocean thermohaline circulation (THC) resulting from reversals of meltwater discharges. Inconsistencies in the documentation of these meltwater switches, however, continue to fuel the debate on the cause/s of the oscillatory nature of the deglacial climate. New oxygen and carbon isotope records from the northern Gulf of Mexico depict in exceptional detail the succession of meltwater floods and pauses through the southern routing during the interval 16 to 8.9 ka (14C years BP; ka, kiloannum). The records underscore the bimodal role played by the Gulf of Mexico as a destination of meltwater discharges from the receding Laurentide Ice Sheet. The evidence indicates that the Gulf of Mexico acted as the principal source of superfloods at 13.4, 12.6, and 11.9 ka that reached the North Atlantic and contributed significantly to density stratification, disruption of ocean ventilation, and cold reversals. Gulf of Mexico lapsed into a "relief valve" position in post-Younger Dryas time, when meltwater discharges were rerouted south at 9.9, 9.7, 9.4, and 9.1 ka, thus temporarily interrupting North Atlantic-bound freshwater discharges from Lake Agassiz. The history of meltwater events in the Gulf of Mexico contradicts the model that meltwater flow via the eastern outlets into the North Atlantic disrupted the ocean THC, causing cooling, while diversions to the Gulf of Mexico via the Mississippi River enhanced THC and warming.
Resumo:
The mixing regime of the upper 180 m of a mesoscale eddy in the vicinity of the Antarctic Polar Front at 47° S and 21° E was investigated during the R.V. Polarstern cruise ANT-XVIII/2 within the scope of the iron fertilization experiment EisenEx. On the basis of hydrographic CTD and ADCP profiles we deduced the vertical diffusivity Kz from two different parameterizations. Since these parameterizations bear the character of empirical functions, based on theoretical and idealized assumptions, they were inter alia compared with Cox-number and Thorpe-scale related diffusivities deduced from microstructure measurements, which supplied the first direct insights into turbulence of this ocean region. Values of Kz in the range of 10**-4 - 10**-3 m**2/s appear as a rather robust estimate of vertical diffusivity within the seasonal pycnocline. Values in the mixed layer above are more variable in time and reach 10**-1 m**2/s during periods of strong winds. The results confirm a close agreement between the microstructure-based eddy diffusivities and eddy diffusivities calculated after the parameterization of Pacanowski and Philander [1981, Journal of Physical Oceanography 11, 1443-1451, doi:10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2].