92 resultados para Chlorophyll Analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) was a global survey of ocean ecosystems aboard the Sailing Vessel Tara. It carried out extensive measurements of evironmental conditions and collected plankton (viruses, bacteria, protists and metazoans) for later analysis using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data publication provides permanent links to original and updated versions of validated data files containing measurements from the Continuous Surface Sampling System [CSSS]. Water was pumped at the front of the vessel from ~2m depth, then de-bubbled and circulated to a WETLabs AC-S spectrophotometer and a WETLabs chlorophyll fluorometer. Systems maintenance (instrument cleaning, flushing) was done approximately once a week and in port between successive legs. All data were stamped with a GPS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Deep Convection cruise repeatedly sampled two locations in the North Atlantic, sited in the Iceland and Norwegian Basins, onboard the RV Meteor (19 March - 2 May 2012). Samples were collected from multiple casts of a conductivity-temperature-depth (CTD) - Niskin rosette at each station. Water samples for primary production rates, community structure, chlorophyll a [Chl a], calcite [PIC], particulate organic carbon [POC] and biogenic silicic acid [BSi] were collected from predawn casts from six light depths (55%, 20%, 14%, 7%, 5% and 1% of incident PAR). Additional samples for community structure and ancillary parameters were collected from a second cast. Carbon fixation rates were determined using the 13C stable isotope method. Water samples for diatom and micro zooplankton counts, collected from the predawn casts, were preserved with acidic Lugol's solution (2% final solution) and counted using an inverted light microscope. Water samples for coccolithophore counts were collected onto cellulose nitrate filters and counted using polarising light microscopy. Water samples for Chl a analysis were filtered onto MF300 and polycarbonate filters and extracted in 90% acetone. PIC and BSi samples were filtered onto polycarbonate filters and analysed using an inductively coupled plasma emission optical spectrometer and a SEAL QuAAtro autoanalyser respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to examine the spatial distribution of organic-walled dinoflagellate cysts (dinocysts) in recent sediments related to environmental conditions in the water column, thirty-two surface sediment samples from the NW African upwelling region (20-32°N) were investigated. Relative abundances of the dinocyst species show distinct regional differences allowing the separation of four hydrographic regimes. (1) In the area off Cape Ghir, which is characterized by most seasonal upwelling and river discharge, Lingulodinium machaerophorum strongly dominates the associations which are additionally characterized by cysts of Gymnodinium nolleri, cysts of Polykrikos kofoidii and cysts of Polykrikos schwartzii. (2) Off Cape Yubi, a region with increasing perennial upwelling, L. machaerophorum, Brigantedinium spp., species of the genus Impagidinium and cysts of Protoperidinium stellatum occur in highest relative abundances. (3) In coastal samples between Cape Ghir and Cape Yubi, Gymnodinium catenatum, species of the genus Impagidinium, Nematosphaeropsis labyrinthus, Operculodinium centrocarpum, cysts of P. stellatum and Selenopemphix nephroides determine the species composition. (4) Off Cape Blanc, where upwelling prevails perennially, and at offshore sites, heterotrophic dinocyst species show highest relative abundances. A Redundancy Analysis reveals fluvial mud, sea surface temperature and the depth of the mixed layer in boreal spring (spring) as the most important parameters relating to the dinocyst species association. Dinocyst accumulation rates were calculated for a subset of samples using well-constrained sedimentation rates. Highest accumulation rates with up to almost 80.000 cysts cm**-2 ky**-1 were found off Cape Ghir and Cape Yubi reflecting their eutrophic upwelling filaments. A Redundancy Analysis gives evidence that primary productivity and the input of fluvial mud are mostly related to the dinocyst association. By means of accumulation rate data, quantitative cyst production of individual species can be considered independently from the rest of the association, allowing autecological interpretations. We show that a combined interpretation of relative abundances and accumulation rates of dinocysts can lead to a better understanding of the productivity conditions off NW Africa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contemporary cnidarian-algae symbioses are challenged by increasing CO2 concentrations (ocean warming and acidification) affecting organisms' biological performance. We examined the natural variability of carbon and nitrogen isotopes in the symbiotic sea anemone Anemonia viridis to investigate dietary shifts (autotrophy/heterotrophy) along a natural pCO2 gradient at the island of Vulcano, Italy. delta 13C values for both algal symbionts (Symbiodinium) and host tissue of A. viridis became significantly lighter with increasing seawater pCO2. Together with a decrease in the difference between delta 13C values of both fractions at the higher pCO2 sites, these results indicate there is a greater net autotrophic input to the A. viridis carbon budget under high pCO2 conditions. delta 15N values and C/N ratios did not change in Symbiodinium and host tissue along the pCO2 gradient. Additional physiological parameters revealed anemone protein and Symbiodinium chlorophyll a remained unaltered among sites. Symbiodinium density was similar among sites yet their mitotic index increased in anemones under elevated pCO2. Overall, our findings show that A. viridis is characterized by a higher autotrophic/heterotrophic ratio as pCO2 increases. The unique trophic flexibility of this species may give it a competitive advantage and enable its potential acclimation and ecological success in the future under increased ocean acidification.