236 resultados para Caiua sandstone
Resumo:
One hundred and sixty core samples were analyzed from Hole 832B to evaluate planktonic foraminiferal datum levels, and to zone and correlate the borehole succession. A total of 32 biostratigraphic events were recognized in the interval from Core 134-832B-59R through 134-832B-73R (702.49 through 846.4 meters below seafloor [mbsf]). These include 17 first appearance datum levels (FAD), 10 last appearance datum levels (LAD), and 5 coiling-change events in trochospiral species. The studied succession has been subdivided into nine planktonic foraminiferal zones (viz. downsequence N.22, N.21, N.20, N.19, N.18, N.17B, N.17A-N.16, N.15, N.8). The zonal index species occur in the expected stratigraphic order for zonal correlation, but some of the zonal boundaries may be diachronous compared to other localities in the western Pacific region. The FAD of Globorotalia (Truncorotalia) truncatulinoides (d' Orbigny) at 714.10 mbsf defines the boundary between the Zone N.22 and N.21; the boundary between Zones N.21 and N.20 at 741.73 mbsf is marked by the FAD of Globorotalia (Truncorotalia) tosaensis Takayanagi and Saito. The lower boundary of Zone N.20 is placed at 747.65 mbsf, based on the FAD of Globorotalia (Truncorotalia) crassaformis s.s. (Galloway and Wissler); the FAD of Sphaeroidinella dehiscens (Parker and Jones) at 756.61 mbsf defines the boundary between Zones N.18 and N.19. The FAD of Globorotalia (Globorotalia) tumida tumida (Brady) at 811.15 mbsf marks the boundary between Zones N.18 and N.17B. The boundary between Zones N.17B and N.17Ais placed at 843.52 mbsf, based on the FAD of Pulleniatina primalis Banner and Blow. A change in depositional conditions occurs at 846.4 mbsf just below the Zone N.17B lower boundary and is marked by the first appearance of abundant planktonic foraminifers in the region. The interval between 849.13 and 856.1 mbsf is placed in undifferentiated Zones N.17A and N.16, based on the rare occurrence of Neogloboquadrina acostaensis (Blow). The sparsely fossiliferous volcanic sandstone unit between 934.19 and 955.67 mbsf is positioned within Zone N.15 based on the presence of Globigerina (Zeaglobigerina) nepenthes Todd and Globigerinoides (Zeaglobigerina) druryi Arkers, and absence of N. acostaensis and Globorotalia (Jenkinsella) siakensis LeRoy. An unconformity between 955.67 and 971.80 mbsf may explain the absence of Zones N.14 through N.9. Basal Zone N.8 is recognized at 971.80 to 1008.60 mbsf by the presence of Globigerinoides sicanus De Stefani and the absence of Praeorbulina and Orbulina spp. The age of the succession between 702.49 and 1008.6 mbsf extends from the latest Pliocene or earliest Pleistocene (Zone N.22) to the earliest middle Miocene (Zone N.8). Among the datum levels evaluated here, the following events are considered to be the most reliable for time correlation in the studied region: the FADs of G. (T.) truncatulinoides, G. (T.) tosaensis, G. (T.) crassaformis, S. dehiscens, G. conglobatus (Brady), G. (G.) tumida tumida, and P. primalis; and the LADs of Globorotalia (Menardella) multicamerata Cushman and Jarvis, and Dentoglobigerina altispira altispira (Cushman and Jarvis). Application of a chronometric scale to part of the succession, suggests that the interval of calcareous sediment between 702.49 and 846.4 mbsf accumulated at about 30 m/m.y.
Resumo:
The Aleutian abyssal plain is a fossil abyssal plain of Paleogene age in the western Gulf of Alaska. The plain is a large, southward-thinning turbidite apron now cut off from sediment sources by the Aleutian Trench. Turbidite sedimentation ceased about 30 m.y. ago, and the apron is now buried under a thick blanket of pelagic deposits. Turbidites of the plain were recovered at site 183 of the Deep Sea Drilling Project on the northern edge of the apron. The heavy-mineral fraction of sand-sized samples is mostly amphibole and epidote with minor pyroxene, garnet, and sphene. The light-mineral fraction is mostly quartzose debris and feldspars. Subordinate lithic fragments consist of roughly equal amounts of metamorphic, plutonic, sedimentary, and volcanic grains. The sand compositions are arkoses in many sandstone classifications, although if fine silt is included with clay as matrix, the sand deposits are feldspathic or lithofeldspathic graywacke. The sands are apparently first-cycle products of deep dissection into a plutonic terrane, and they contrast sharply with arc-derived volcanic sandstones of similar age common on the adjacent North American continental margin. The turbidite sands are stratigraphically remarkably constant in composition, which indicates derivation from virtually the same terrane through a time span approaching 20 m.y. Comparison of Aleutian plain data with the compositions of coeval sedimentary rocks from the northeast Pacific margin shows that the Kodiak shelf area includes possible proximal equivalents of the more distal turbidites. Derivation from the volcaniclastic Mesozoic flysch of the Shumagin-Kodiak shelf is unlikely; more probably the sediments were derived from primary plutonic sources. The turbidites also resemble deposits in the Chugach Mountains and the younger turbidites of the Alaskan abyssal plain and could conceivably have been derived from the coast ranges of southeastern Alaska or western British Columbia. The Aleutian plain sediment most likely was not derived from as far south as the Oregon-Washington continental margin, where coeval sedimentary deposits are dominantly volcaniclastic.
Resumo:
Oceanic zircon trace element and Hf-isotope geochemistry offers a means to assess the magmatic evolution of a dying spreading ridge and provides an independent evaluation of the reliability of oceanic zircon as an indicator of mantle melting conditions. The Macquarie Island ophiolite in the Southern Ocean provides a unique testing ground for this approach due to its formation within a mid-ocean ridge that gradually changed into a transform plate boundary. Detrital zircon recovered from the island records this change through a progressive enrichment in incompatible trace elements. Oligocene age (33-27 Ma) paleo-detrital zircon in ophiolitic sandstones and breccias interbedded with pillow basalt have trace element compositions akin to a MORB crustal source, whereas Late Miocene age (8.5 Ma) modern-detrital zircon collected from gabbroic colluvium on the island have highly enriched compositions unlike typical oceanic zircon. This compositional disparity between age populations is not complimented by analytically equivalent eHf data that primarily ranges from 14 to 13 for sandstone and modern-detrital populations. A wider compositional range for the sandstone population reflects a multiple pluton source provenance and is augmented by a single cobble clast with eHf equivalent to the maximum observed composition in the sandstone (~17). Similar sandstone and colluvium Hf-isotope signatures indicate inheritance from a similar mantle reservoir that was enriched from the depleted MORB mantle average. The continuity in Hf-isotope signature relative to trace element enrichment in Macquarie Island zircon populations, suggests the latter formed by reduced partial melting linked to spreading-segment shortening and transform lengthening along the dying spreading ridge.
Resumo:
Ocean Drilling Program Leg 103 recovered Lower Cretaceous sediments from the Galicia margin off the coast of Iberia. The high diversity and abundance of assemblages makes this excellent material for the study of Early Cretaceous calcareous nannofossils. With the exception of a hiatus between the upper Hauterivian and lower Barremian, nannofossil distributions form a continuous composite section from the lower Valanginian to lower Cenomanian sediments recovered at the four sites. The sedimentation history of this rifted continental margin is complex, and careful examination of the nannofossil content and lithology is necessary in order to obtain optimum biostratigraphic resolution. The Lower Cretaceous sequence consists of a lower Valanginian calpionellid marlstone overlain by terrigenous sandstone turbidites deposited in the Valanginian and Hauterivian during initial rifting of this part of the margin. Interbedded calcareous marl and claystone microturbidites overlie the sandstone turbidites. Rifting processes culminated in the late Aptian-early Albian, resulting in the deposition of a calcareous, clastic turbidite sequence. The subsequent deposition of dark carbonaceous claystones (black shales) represents the beginning of seafloor spreading, as the margin continued to subside to depths near or below the CCD. The diversity, abundance, and preservation of nannofossils within these varied lithologies differ, and an attempt to distinguish between near shore and open-marine assemblages is made. Genera used for this purpose include Nannoconus, Micrantholithus, Pickelhaube, and Lithraphidites. In this study, six new species and one new subspecies are described and documented. Ranges of other species are extended, and an attempt is made to clarify existing, yet poorly understood, taxonomic concepts. A technique in which a single specimen is viewed with both light and scanning electron microscopes was used extensively to aid in this task. In addition, further subdivisions of the Sissingh (1977) zonation are suggested in order to increase biostratigraphic resolution.
Resumo:
Surface sediments from 5 profiles between 30 and 3000 m water depth off W Africa (12-19° N) have been studied for their sand fraction composition and their total calcium carbonate and organic matter contents to evaluate the effect of climatic and hydrographic factors on actual sedimentation. On the shelf and upper slope (< 500 m), currents prevent the deposition of significant amounts of fine-grained material. The sediments forming here are characterized by high sand contents (> 60 %; in most samples > 89 %), low organic carbon contents (in most samples < 0.8 %), high median diameters of the sand fraction (120-500 µm), and by a predominance of quartz and biogenic relict shells (most abundant: molluscs and bryozoans) in the sand fraction. Median diameters of total sand fraction and of major biogenic sand fraction components (biogenic relict material, benthonic molluscs, benthonic and planktonic foraminifers) co-vary to some extent and show maximum values in 100-300 m water depth, reflectingthe sorting effect of currents (perhaps the northward flowing undercurrent). In this water depth, biogenic relict material is considerably enriched relative to wuartz, the second dominating sand fraction component on the shelf and upper slope, resulting in distinct calcium carbonate maxima of the bulk sediments. The influence of the undercurrent is also reflected in a northward transport of fine grained river load and perhaps in the distribution of the red stained, coarse silt and sand-size clay aggregates, which show maxima in 300-500 m water depth. They probably originate from tropical soils. Abundant coarse red-stained quartz on the shelf off Cape Roxo (12-130° N) suggests a southward extension of last glacial dune fields to this latitude. Below about 500 m water depth, current influence becomes negligible - as indicated by a strong decrease in sand content, a concomitant increase in sedimentary organic carbon contents (up to 2.5-3.5 %), and the occurence of high mica/quartz ratios in the sand fraction. Downslope transport, presumably due to the bioturbation mechanism, is indicated by the presence of coarse shelf-borne particles (glauconite, relict shells) down to about 1000 m water depth. The fine/coarse ratio (clay + silt/sand) of the sediments from water deoth > 500 m never exceed a value of 11 in northern latitudes (19° - 26° N), but shows distinct maxima, ranging from 50 to 120, at latitudes 18°, 17° 15°30', and 14° N in about 2000 m water depth. This distribution is attributed to the deposition of fine-grained river load at the continental slope between 18° and 14° N, brought into the sea by the Senegal and souther rivers and transported northward ny the undercurrent. Strong calcium carbonate dissolution is indicated by the complete disappearance of pteropodes (aragonite) and high fragmentation of the planktoic foraminifers (calcite) in sediments from water depth > 300-600 m. Fragmentation ratios of planktonic foraminifers were found to depend on the organic carbon/carbonate ratios of the sediment suggesting that calcite dissolution at the sea bottom may also be significant in shelf and continental slope water depths if the organic matter/carbonate ratio of the surface sediment is high and the test remain long enough within the oxidizing layer on the top of the sulfate reduction zone. The fact that in the region under study intensity and anual duration of upwelling decrease from north to south is neither reflected in the composition on the sand fraction (i.e. radiolarian and fish debris contents, radiolarian/planktonic foraminiferal ratios, benthos/plankton ratios of foraminifers), nor in the sedimentary organic carbon distribution. On the contrary, these parameters even show in comparable water depths a tendency for highest values in the south, partly because primary production rates remain high in the whole region, particularly on the shelf, due to the nutrient input by rivers in the south. In addition, several hydrographic, sedimentological and climatic factors severely affect their distribution - for example currents, dissolution, grain size composition, deposition of river load, and bulk sedimentation rats.
Resumo:
During Ocean Drilling Program Leg 126, six sites were cored in a young backarc rift basin and its flanks (rift onset 1.1-3.56 Ma) and in the forearc basin of the Izu-Bonin Arc. In the backarc area, strata are younger than about 4.5 Ma, whereas in the forearc, ages are about 0-31 Ma in sections punctuated by important Miocene unconformities. Bulk chemical analyses of volcaniclastic turbidite sands and sandstones, derived directly from the arc, were obtained from 271 atomic absorption analyses (major elements), 253 XRF analyses (trace elements) and 16 ICP-MS analyses (trace and rare-earth elements). Of the 271 samples, 78 come from the backarc area and the remainder from the forearc. The sands and sandstones reflect the igneous compositions of their sources. Most are formed of materials derived from subalkaline, low-K andesites, and dacites, although compositions range from basalt to rhyolite. Basic and acid andesites are predominant in Oligocene rocks; in contrast, Pliocene-Pleistocene sediments were derived from acid andesitic to rhyolitic sources. The oldest sandstones, estimated to have an age of about 31 Ma, were derived from an arc tholeiitic, not boninitic, source. The 26-31 Ma sandstones furthest to the north, at Sites 787 and 792, have higher relative concentrations of Ti, Zr, and Y than do those at southern Site 793. Data from younger samples indicate that, for more than 30 m.y., the average composition of volcaniclastic sediments and volcanism near Aoga Shima was more basic than to the south, near Sumisu Jima. Using the sandstones as igneous proxies, we conclude that magmas erupted along the arc have become more depleted in light-rare-earth elements (LREE) with time. There was a major change in rare-earth-element (REE) concentrations in the late Oligocene, from essentially flat patterns (normalized La/Yb about 1-1.5) to LREE-depleted patterns (normalized La/Yb about 0.5). At the same time, Zr/Y ratios decreased from about 2-4 to about 1.5-2.5. These changes may reflect a shift in provenance, or changes in the composition of the mantle wedge beneath the arc. In the backarc area, lithic clasts and glass shards of rift-facies basalt are present in sediments as old as 2.35-3.15 Ma. Two samples of mafic sand from the backarc basin have flat REE patterns (normalized La/Yb about 1.0), like some of the <1-Ma rift lavas and unlike pre-rift sand and sandstone samples. These possibly represent the local effects of sedimentary mixing of detritus from arc and backarc eruptions because no evidence from the arc itself exists to suggest a recent change in the REE content of magmas.
Resumo:
Deposits corresponding to multiple periods of glaciation are preserved in ice-free areas adjacent to Reedy Glacier, southern Transantarctic Mountains. Glacial geologic mapping, supported by 10Be surface-exposure dating, shows that Reedy Glacier was significantly thicker than today multiple times during the mid-to-late Cenozoic. Longitudinal-surface profiles reconstructed from the upper limits of deposits indicate greater thickening at the glacier mouth than at the head during these episodes, indicating that Reedy Glacier responded primarily to changes in the thickness of the West Antarctic Ice Sheet. Surface-exposure ages suggest this relationship has been in place since at least 5 Ma. The last period of thickening of Reedy Glacier occurred during Marine Isotope Stage 2, at which time the glacier surface near its confluence with the West Antarctic Ice Sheet was at least 500 m higher than today.
Resumo:
From 1950 through 1900 studies on the glacial geology of northern Greenland have been made in cooperation with the U.S. Air Force Cambridge Research Laboratories. As a result of these studies four distinct phases of the latest glaciation have been recognized. The last glaciation extended over most of the land and removed traces of previous anes. Retreat of the ice mass began some time previous to 6000 years ago. This was followed by a rtse in sea level which deposited clay-silt succeeded by karne gravels around stagnant ice lobes in the large valleys. Marine terraces, up to 129 meters above present sea level, developed as readjustment occurred in the land free of ice. About 3700 years ago an advance of glaciers down major fjords took place followed by retreat to approximately the present position of the ice. Till in Peary Land, north of Frederick E. Hyde Fjord, contains only locally derived matertals indicating that the central Greenland ice cap did not cover the area.
Resumo:
Diversity of endolithic Dry Valley rock microorganisms was studied by evaluating the presence of morphotypes in enrichments. Storage of rock samples for 16 h over dry ice affected the diversity of endolithic organisms, especially that of algae and fungi. Diversity in various samples depended on rock location and exposure, on the rock type, and to some extent on the pH of the pulverized rock samples. In most cases sandstone contained more morphotypes than dolerite or granite. Presence of many different phototrophs resulted in greater diversity of the heterotrophs in the enrichments. Samples from Linnaeus Terrace and Battleship Promontory had higher morphotype (MT) numbers than those from more exposed sites such as New Mountain, University Valley, Dais, or Mt. Fleming. Beacon sandstone (13 samples) from Linnaeus Terrace varied greatly with respect to MT numbers, although the pH values ranged only from 4.2-5.3. The highest MT number of 24 per sample was obtained from the upper surface of a flat boulder tilted to the North. Only two MT's were found in a hard sandstone sample from the wind-exposed and more shaded east side of the Terrace. 15 sandstone samples from Battleship Promontory contained more diverse populations: there occurred a total of 131 different MT's in these samples as compared to only 68 in Linnaeus Terrace samples. Cysts of colorless flagellates were found in some Battleship Promontory samples; rnost samples were populated with a wealth of different cyanobacteria. Studies on the distribution of actinomycete morphotypes in Linnaeus Terrace sandstone revealed great differences between individual boulders. Identification tests and lipid analyses made with representative strains of the isolated 1500 pure cultures led to genus names such as Caulobacter, Blastobacter, Hyphomicrobium, Micrococcus, Arthrobacter, Brevibacterium, Corynebacterium, Bifidobacterium, Mycobacterium, Nocardia (Amycolata), Micromonospora, Streptomyces, Blastococcus, and Deinococcus. Our data demonstrate the great diversity of Antarctic endolithic microbial populations.