97 resultados para CLIMATE OSCILLATIONS


Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A deep-sea sediment core from the western Portuguese margin has provided a continuous, high-resolution record of millennial-scale climatic oscillations during the interval 9000-65,000 yr B.P. Pollen analysis of the same sequence allows direct, in situ assessment of the phase relationship between the North Atlantic climate system and vegetation changes on the adjacent landmass. This demonstrates for the first time that variability in NW Iberian tree population size closely tracked millennial-scale climate variability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New surface water records from two high sedimentation rate sites, located in the western subtropical North Atlantic near the axis of the Gulf Stream, provide clear evidence of suborbital climate variations through marine isotope stage (MIS) 5 persisting even into the warm peak of the interglaciation (substage 5e). We found that the amplitude of suborbital climate oscillations did not vary significantly for the whole of MIS 5, implying that ice volume has little or no influence on the amplitude of suborbital climate variability in this region. Although some records suggest that longer suborbital variations (4-10 kyr) during MIS 5 are linked to deepwater changes, none of the existing records is of sufficient resolution to assess if a linkage occurred for oscillations shorter than 4 kyr. However, when examined in conjunction with published data from the Norwegian Sea, new evidence from the subpolar North Atlantic suggests that coupled surface-deepwater oscillations occurred during the penultimate deglaciation. This supports the hypothesis that during glacial and deglacial times, ocean-ice interactions and deepwater variability amplify suborbital climate change at higher latitudes. We suggest that during the penultimate deglaciation the North Atlantic deepwater source varied between Nordic Sea and open North Atlantic locations, in parallel with surface temperature oscillations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As shown by the work of Dansgaard and his colleagues, climate oscillations of one or so millennia duration punctuate much of glacial section of the Greenland ice cores. These oscillations are characterized by 5°C air temperature changes, severalfold dust content changes and 50 ppm CO2 changes. Both the temperature and CO2 change are best explained by changes in the mode of operation of the ocean. In this paper we provide evidence which suggests that oscillations in surface water conditions of similar duration are present in the record from a deep sea core at 50°N. Based on this finding, we suggest that the Greenland climate changes are driven by oscillations in the salinity of the Atlantic Ocean which modulate the strength of the Atlantic's conveyor circulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The signature of Dansgaard-Oeschger events - millennial-scale abrupt climate oscillations during the last glacial period - is well established in ice cores and marine records (Labeyrie, 2000, doi:10.1126/science.290.5498.1905; Blunier and Brook, 2001, doi:10.1126/science.291.5501.109: Bond et al., 2001, doi:10.1126/science.1065680). But the effects of such events in continental settings are not as clear, and their absolute chronology is uncertain beyond the limit of 14C dating and annual layer counting for marine records and ice cores, respectively. Here we present carbon and oxygen isotope records from a stalagmite collected in southwest France which have been precisely dated using 234U/230Th ratios. We find rapid climate oscillations coincident with the established Dansgaard-Oeschger events between 83,000 and 32,000 years ago in both isotope records. The oxygen isotope signature is similar to a record from Soreq cave, Israel (Bar-Mathews et al., 2000, doi:10.1016/S0009-2541(99)00232-6), and deep-sea records (Bond et al., 1993, doi:10.1038/365143a0; Shackleton and Hall, 2001, doi:10.1029/2000PA000513), indicating the large spatial scale of the climate oscillations. The signal in the carbon isotopes gives evidence of drastic and rapid vegetation changes in western Europe, an important site in human cultural evolution. We also find evidence for a long phase of extremely cold climate in southwest France between 61.2 +/-0.6 and 67.4 0.9 kyr ago.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evidence of rapid climatic oscillations like those observed in the Greenland ice cores and sediments from high latitudes of the northern Atlantic have been recognized in the pulses of terrigenous material to continental margin sediments off Cameroon. Fe/Ca ratios used as a parameter to quantify the relative proportions of terrigenous fluxes versus marine carbonate monitor the variability of the west African monsoon. They reveal the history of abrupt changes in precipitation over western and central Africa during the past 52 kyr. These rapid changes are particularly pronounced during the last glacial period and occur at timescales of a few thousand years. Stable oxygen isotope (delta18O) records of Globigerinoides ruber (pink) show high negative values reflecting periods of high monsoon precipitation. The Fe/Ca pattern is very similar to the Dansgaard-Oeschger cycles from the Greenland ice cores. The good correspondence between the warm interstadials of the Dansgaard-Oeschger cycles from the GISP2 ice core records and the high pulses of Fe/Ca sedimentation in our core suggest a strong teleconnection between the low-latitude African climate and the high-latitude northern hemisphere climate oscillations during the last glacial. This climatic link is probably vested in the west African monsoonal fluctuation that alters tropical sea surface temperatures, thermohaline circulations and in turn net export of heat from the south to the north Atlantic, coupled with the variability of the low-latitude southeast trade winds.