83 resultados para Boyer, Jean Pierre, 1776-1850.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased oceanic uptake of atmospheric carbon dioxide (CO2) is a threat to marine organisms and ecosystems. Among the most dramatic consequences predicted to date are behavioural impairments in marine fish which appear to be caused by the interference of elevated CO2 with a key neurotransmitter receptor in the brain. In this study, we tested the effects of elevated CO2 on the foraging and shelter-seeking behaviours of the reef-dwelling epaulette shark, Hemiscyllium ocellatum. Juvenile sharks were exposed for 30 d to control CO2 (400 µatm) and two elevated CO2 treatments (615 and 910 µatm), consistent with medium- and high-end projections for ocean pCO2 by 2100. Contrary to the effects observed in teleosts and in some other sharks, behaviour of the epaulette shark was unaffected by elevated CO2. A potential explanation is the remarkable adaptation of H. ocellatum to low environmental oxygen conditions (hypoxia) and diel fluctuations in CO2 encountered in their shallow reef habitat. This ability translates into behavioural tolerance of near-future ocean acidification, suggesting that behavioural tolerance and subsequent adaptation to projected future CO2 levels might be possible in some other fish, if adaptation can keep pace with the rate of rising CO2 levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The position and intensity of the southern westerly wind belt varies seasonally as a consequence of changes in sea surface temperature. During the austral winter, the belt expands northward and the wind intensity in the core decreases. Conversely, during the summer, the belt contracts, and the intensity within the core is strengthened. Reconstructions of the westerly winds since the last glacial maximum, however, have suggested that changes at a single site reflected shifts throughout the entire southern wind belt. Here we use sedimentological and pollen records to reconstruct precipitation patterns over the past 12,500 yr from sites along the windward side of the Andes. Precipitation at the sites, located in the present core and northern margin of the westerlies, is driven almost entirely by the wind belt, and can be used to reconstruct its intensity. Rather than varying coherently throughout the Holocene epoch, we find a distinct anti-phasing of wind strength between the core and northern margin over multi-millennial timescales. During the early Holocene, the core westerlies were strong whereas the northern margin westerlies were weak. We observe the opposite pattern in the late Holocene. As this variation resembles modern seasonal variability, we suggest that our observed changes in westerly wind strength can best be explained by variations in sea surface temperature in the eastern South Pacific Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification causes corals to calcify at reduced rates, but current understanding of the underlying processes is limited. Here, we conduct a mechanistic study into how seawater acidification alters skeletal growth of the coral Stylophora pistillata. Reductions in colony calcification rates are manifested as increases in skeletal porosity at lower pH, while linear extension of skeletons remains unchanged. Inspection of the microstructure of skeletons and measurements of pH at the site of calcification indicate that dissolution is not responsible for changes in skeletal porosity. Instead, changes occur by enlargement of corallite-calyxes and thinning of associated skeletal elements, constituting a modification in skeleton architecture. We also detect increases in the organic matrix protein content of skeletons formed under lower pH. Overall, our study reveals that seawater acidification not only causes decreases in calcification, but can also cause morphological change of the coral skeleton to a more porous and potentially fragile phenotype.