83 resultados para Balance of payments.


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on a radiocarbon and paleomagnetically dated sediment record from the northern Red Sea and the exceptional sensitivity of the regional changes in the oxygen isotope composition of sea water to the sea-level-dependent water exchange with the Indian Ocean, we provide a new global sea-level reconstruction spanning the last glacial period. The sea-level record has been extracted from the temperature-corrected benthic stable oxygen isotopes using coral-based sea-level data as constraints for the sea-level/oxygen isotope relationship. Although, the general features of this millennial-scale sea-level records have strong similarities to the rather symmetric and gradual Southern Hemisphere climate patterns, we observe, in constrast to previous findings, pronounced sea level rises of up to 25 m to generally correspond with Northern Hemisphere warmings as recorded in Greenland ice-core interstadial intervals whereas sea-level lowstands mostly occur during cold phases. Corroborated by CLIMBER-2 model results, the close connection of millennial-scale sea-level changes to Northern Hemisphere temperature variations indicates a primary climatic control on the mass balance of the major Northern Hemisphere ice sheets and does not require a considerable Antarctic contribution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Atmospheric carbon dioxide emissions cause a decrease in the pH and aragonite saturation state of surface ocean water. As a result, calcifying organisms are expected to suffer under future ocean conditions, but their physiological responses may depend on their nutrient status. Because many coral reefs experience high inorganic nutrient loads or seasonal changes in nutrient availability, reef organisms in localized areas will have to cope with elevated carbon dioxide and changes in inorganic nutrients. Halimeda opuntia is a dominant calcifying primary producer on coral reefs that contributes to coral reef accretion. Therefore, we investigated the carbon and nutrient balance of H. opuntia exposed to elevated carbon dioxide and inorganic nutrients. We measured tissue nitrogen, phosphorus and carbon content as well as the activity of enzymes involved in inorganic carbon uptake and nitrogen assimilation (external carbonic anhydrase and nitrate reductase, respectively). Inorganic carbon content was lower in algae exposed to high CO2, but calcification rates were not significantly affected by CO2 or inorganic nutrients. Organic carbon was positively correlated to external carbonic anhydrase activity, while inorganic carbon showed the opposite correlation. Carbon dioxide had a significant effect on tissue nitrogen and organic carbon content, while inorganic nutrients affected tissue phosphorus and N:P ratios. Nitrate reductase activity was highest in algae grown under elevated CO2 and inorganic nutrient conditions and lowest when phosphate was limiting. In general, we found that enzymatic responses were strongly influenced by nutrient availability, indicating its important role in dictating the local responses of the calcifying primary producer H. opuntia to ocean acidification.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present surface elevations and ice thicknesses along an airborne radar survey made in Eastern Dronning Maud Land. The survey was carried out above 4 major outlet glaciers which flows around Sør Rondane Mountains with AWI's radar mounted on Polar 5 plane. The data were collected between the 21st and the 23th of January 2011. A full description of the data can be found in Callens et al. (see further detatils).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The distribution of redox-sensitive metals in sediments is potentially a proxy for past ocean ventilation and productivity, but deconvolving these two major controls has proved difficult to date. Here we present a 740 kyr long record of trace element concentrations from an archived sediment core collected at ~15°S on the western flank of the East Pacific Rise (EPR) on 1.1 Myr old crust and underlying the largest known hydrothermal plume in the world ocean. The downcore trace element distribution is controlled by a variable diagenetic overprint of the inferred primary hydrothermal plume input. Two main diagenetic processes are operating at this site: redox cycling of transition metals and ferrihydrite to goethite transition during aging. The depth of oxidation in these sediments is controlled by fluctuations in the relative balance of bottom water oxygen and electron donor input (organic matter and hydrothermal sulfides). These fluctuations induce apparent variations in the accumulation of redox-sensitive species with time. Subsurface U and P peaks in glacial age sediments, in this and other published data sets along the southern EPR, indicate that basin-wide changes in deep ocean ventilation, in particular at glacial-interglacial terminations II, III, IV, and V, alter the depth of the oxidation front in the sediments. These basin-wide changes in the deep Pacific have significant implications for carbon partitioning in the ocean-atmosphere system, and the distribution of redox-sensitive metals in ridge crest sediment can be used to reconstruct past ocean conditions at abyssal depths in the absence of alternative proxy records.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The redox stratification of bottom sediments in Kandalaksha Bay, White Sea, is characterized by elevated concentrations of Mn (3-5%) and Fe (7.5%) in the uppermost layer, which is two orders of magnitude and one and a half times, respectively, higher than the average concentrations of these elements in the Earth's crust. The high concentrations of organic matter (Corg = 1-2%) in these sediments cannot maintain (because of its low reaction activity) the sulfate-reducing process (the concentration of sulfide Fe is no higher than 0.6%). The clearest manifestation of diagenesis is the extremely high Mn2+ concentration in the silt water (>500 µM), which causes its flux into the bottom water, oxidation in contact with oxygen, and the synthesis of MnO2 oxy-hydroxide enriching the surface layer of the sediments. Such migrations are much less typical of Fe. Upon oxygen exhaustion in the uppermost layer of the sediments, the synthesized oxyhydroxides (MnO2 and FeOOH) serve as oxidizers of organic matter during anaerobic diagenesis. The calculated diffusion-driven Mn flux from the sediments (280 µM/m**2 day) and corresponding amount of forming Mn oxyhydrate as compared to opposite oxygen flux to sediments (1-10 mM/m**2 day) indicates that >10% organic matter in the surface layer of the sediments can be oxidized with the participation of MnO2. The roles of other oxidizers of organic matter (FeOOH and SO4**2-) becomes discernible at deeper levels of the sediments. The detailed calculation of the balance of reducing processes testifies to the higher consumption of organic matter during the diagenesis of surface sediments than it follows from the direct determination of Corg. The most active diagenetic redox processes terminate at depths of 25-50 cm. Layers enriched in Mn at deeper levels are metastable relicts of its surface accumulation and are prone to gradual dissemination.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To evaluate the possible contribution of ocean floor sediments during the genesis of the volcanism of Vanuatu (New Hebrides) active margin, we have determined the balance of Sr isotopes and K, Rb and Sr contents for the stratigraphic column of site 286 (leg 30, DSDP). This site is located on the oceanic plate that will be subducted. Analyses have been performed on sedimentary and igneous rocks, before and after acid leaching. The Sr isotopic data do not support the occurrence of some continental component in arc magmas of this active margin which is really intraoceanic. It is demonstrated that the d'Entrecasteaux fracture zone results from the intense fracturing of typical oceanic crust. The analyses of the volcanogenic components of the sediments show a change in the source of volcanoclastic detritus from the Loyalty islands in the Eocene to the volcanic arc of Vanuatu (New Hebrides) during Pliocene and Quaternary times. The determined balance of Sr isotopes and of K, Rb, Sr contents, may be used for calculation of multicomponent melting mixing models for the origin of Vanuatu arc magmas, but we emphasize that in these models the Sr isotopes cannot be considered as an appropriated tracer of sediment contribution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ocean acidification (OA) is expected to reduce the net ecosystem calcification (NEC) rates and overall accretion of coral reef ecosystems. However, despite the fact that sediments are the most abundant form of calcium carbonate (CaCO3) in coral reef ecosystems and their dissolution may be more sensitive to OA than biogenic calcification, the impacts of OA induced sediment dissolution on coral reef NEC rates and CaCO3 accretion are poorly constrained. Carbon dioxide addition and light attenuation experiments were performed at Heron Island, Australia in an attempt to tease apart the influence of OA and organic metabolism (e.g. respiratory CO2 production) on CaCO3 dissolution. Overall, CaCO3 dissolution rates were an order of magnitude more sensitive to elevated CO2 and decreasing seawater aragonite saturation state (Omega Ar; 300-420% increase in dissolution per unit decrease in Omega Ar) than published reductions in biologically mediated calcification due to OA. Light attenuation experiments led to a 70% reduction in net primary production (NPP), which subsequently induced an increase in daytime (115%) and net diel (375%) CaCO3 dissolution rates. High CO2 and low light acted in synergy to drive a 575% increase in net diel dissolution rates. Importantly, disruptions to the balance of photosynthesis and respiration (P/R) had a significant effect on daytime CaCO3 dissolution, while average water column ?Ar was the main driver of nighttime dissolution rates. A simple model of platform-integrated dissolution rates was developed demonstrating that seasonal changes in photosynthetically active radiation (PAR) can have an important effect on platform integrated CaCO3 sediment dissolution rates. The considerable response of CaCO3 sediment dissolution to elevated CO2 means that much of the response of coral reef communities and ecosystems to OA could be due to increases in CaCO3 sediment and framework dissolution, and not decreases in biogenic calcification.