123 resultados para Bacon


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of 210Pb and 210 Po on dissolved (< 0.4 micron) and particulate (> 0.4 micron) phases has been measured at ten stations occupied during cruise 32 of F.S. "Meteor" in the tropical and eastern North Atlantic. Both radionuclides occur principally in the dissolved phase. Unsupported 210Pb activities, maintained by flux from the atmosphere, are present in the surface mixed layer and penetrate into the thermocline to depths of about 500 m. Dissolved 210Po is ordinarily present in the mixed layer at less than equilibrium concentrations, suggesting rapid biological removal of this nuclide. Particulate matter is enriched in 210Po, with 210Po/210Pb activity ratios greater than 1.0, similar to those reported for phytoplankton. At depths of 100-300 m, 210Po maxima occur, and unsupported 210Po is frequently present, an observation that suggests rapid re-cycling within the thermocline. Comparison of the 210Pb distributions with those reported for 226Ra at nearby GEOSECS stations confirms the widespread existence of a 210Pb/226Ra disequilibrium in the deep sea. Close to the bottom, profiles of 210Pb and 226Ra usually diverge, and 210Pb concentrations frequently decrease with depth, suggesting a sink 210 Pb near the seafloor. Particulate 210Pb concentrations ordinarily show little systematic variation with depth. At depths greater than 1000 m, dissolved 210Po activities are, on the average, less than those of 210Pb by 12%. A corresponding 210 Po enrichment in the particulate phase is found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution records of opal, carbonate, and terrigenous fluxes have been obtained from a high-sedimentation rate core (MD84-527: 43°50'S; 51°19'E; 3269 m) by normalization to 230Th. This method estimates paleofluxes to the seafloor on a point-by-point basis and distinguishes changes in sediment accumulation due to variations in vertical rain rates from those due to changes in syndepositional sediment redistribution by bottom currents. We also measured sediment delta15N to evaluate the changes in nitrate utilization in the overlying surface waters associated with paleoflux variations. Our results show that opal accumulation rates on the seafloor during the Holocene and stage 3, based on 14C dating, were respectively tenfold and fivefold higher than the vertical rain rates, At this particular location, changes in opal accumulation on the seafloor appear to be mainly controlled by sediment redistribution by bottom currents rather than variations in opal fluxes from the overlying water column. Correction for syndepositional sediment redistribution and the improved time resolution that can be achieved by normalization to 230Th disclose important variations in opal rain rates. We found relatively high but variable opal paleoflux during stage 3, with two maxima centered at 36 and 30 kyr B.P., low opal paleoflux during stage 2 and deglaciation and a pronounced maximum during the early Holocene, We interpret this record as reflecting variations in opal production rates associated with climate-induced latitudinal migration of the southern ocean frontal system. Sediments deposited during periods of high opal paleoflux also have high authigenic U concentrations, suggesting more reducing conditions in the sediment, and high Pa-231/Th-230 ratios, suggesting increased scavenging from the water column. Sediment delta15N is circa 1.5 per mil higher during isotopic stage 2 and deglaciation. The low opal rain rates recorded during that period appear to have been associated with increased nitrate depletion. This suggests that opal paleofluxes do not simply reflect latitudinal migration of the frontal system but also changes in the structure of the upper water column. Increased stratification during isotopic stage 2 and deglaciation could have been produced by a meltwater lid, leading to lower nitrate supply rates to surface waters.