134 resultados para Average (0-75 m) corresponds to Locarnini et al., 2006


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m of the mineral soil from each of the experimental plots in March 2006. In October 2006 also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled. Measurements from the management experiment are separated into 0 to 0.08 m and 0.08 to 0.15 m. Samples of the soil cores per plot (subplots in case of the management experiment) were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, AutoAnalyzer, Seal, Burgess Hill, United Kingdom).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variations in primary productivity (PP) have been reconstructed in eutrophic, mesotrophic and oligotrophic parts of the Arabian Sea over the past 135 000 years applying principal component analysis and transfer function to planktic foraminiferal assemblages. Temporal variation in paleoproductivity is most pronounced in the mesotrophic northern (NAST site) and oligotrophic eastern (EAST site) Arabian Sea, and comparatively weak in the western eutrophic GeoB 3011-1 site in the upwelling area off Oman. Higher PP during interglacials (250-320 g C/m**2 year) than during cold stages (210-270 g C/m**2 year) at GeoB 3011-1 could have been caused by a strengthened upwelling during intensified summer monsoons and increased wind velocities. At NAST, during interglacials, PP is estimated to exceed g C/m**2 year 1, and during glacials to be as low as 140-180 g C/m**2 year. These fluctuations may result from a (1) varying impact of filaments that are associated to the Oman coastal upwelling, and (2) from open-ocean upwelling associated to the Findlater Jet. At EAST, highest productivity of about 380 g C/m**2 year is documented for the transition from isotope stage 5 to 4. We suggest that during isotope stages 2, 4, 5.2, the transition 5/4, and the end of stage 6, deep mixing of surface waters was caused by moderate to strong winter monsoons, and induced an injection of nutrients into the euphotic layer leading to enhanced primary production. The deepening of the mixed layer during these intervals is confirmed by an increased concentration of deep-dwelling planktic foraminiferal species. A high-productivity event in stage 3, displayed by estimated PP values, and by planktic foraminifera and radiolaria flux and accumulation rate, likely resulted from a combination of intensified SW monsoons with moderate to strong NE monsoons. Differential response of Globigerina bulloides, Globigerinita glutinata and mixed layer species to the availability of food is suited to subdivide productivity regimes on a temporal and spatial scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents a record of dissolution from the eastern equatorial Pacific (EEP) that extends to 2.1 Ma, based on sediments from Ocean Drilling Program (ODP) Site 1241. A new benthic oxygen isotope record was developed in order to provide the stratigraphic framework for the Pleistocene section of the core. The isotope record extends back to 2.1 Ma, covering MIS 1-80, and has a sampling resolution of 2 kyr from 0 to 360 kyr and 5 kyr from 360 to 2100 kyr. Dissolution at ODP Site 1241 is characterized through the use of percent coarse fraction (%CF) and shell fragmentation records. These records indicate that %CF in the EEP is recording a dissolution signal dominated by the 41-kyr and 100-kyr climate cycles, and that preservation maxima lag glacial maxima by 9-14 kyr at the major orbital periods. The dissolution signals observed in the ODP Site 1241 record can be correlated across the Pacific and likely record the response to basinwide changes in carbonate chemistry. The dissolution fluctuations and d13C signal observed at ODP Site 1241 are consistent with both the [Shackleton, 1977] and [Toggweiler et al., 2006, doi:10.1029/2005PA001154] hypotheses that explain changes in the global carbon cycle during glacial-interglacial transitions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Net Primary Production was measured using the 14**C uptake method with minor modifications. Melt pond samples were spiked with 0.1µCi ml**-1 of 14**C labelled sodium bicarbonate (Moravek Biochemicals, Brea, USA) and distributed in 10 clear bottles (20 ml each). Subsequently they were incubated for 12 h at -1.3°C under different scalar irradiances (0-420 µmol photons m**-2 s**-1) measured with a spherical sensor (Spherical Micro Quantum Sensor US-SQS/L, Heinz Walz, Effeltrich, Germany). At the end of the incubation, samples were filtered onto 0.2 µm nitrocellulose filters and the particulate radioactive carbon uptake was determined by liquid scintillation counting using Filter count scintillation cocktail (Perkin Elmer, Waltham, USA). The carbon uptake values in the dark were subtracted from the carbon uptake values measured in the light incubations. Dissolved inorganic carbon (DIC) was measured for each sample using the flow injection system (Hall and Aller, 1992). The DIC concentration was taken into account to calculate the amount of labeled bicarbonate incorporated into the cell. Carbon fixation rates were normalized volumetrically and by chlorophyll a. Photosynthesis-irradiance curves (PI curves) were fitted using MATLAB® according to the equation proposed by Platt et al. (1980) including a photoinhibition parameter (beta) and providing the main photosynthetic parameters: maximum Chla normalized carbon fixation rate if there were no photoinhibition (Pb) and the initial slope of the saturation curve (alpha). The derived parameters: light intensity at which photosynthesis is maximal (Im), the carbon fixation rate at that maximal irradiance (Pbm) and the adaptation parameter or photoacclimation index (Ik) were calculated according to Platt et al. (1982).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Net Primary Production was measured using the 14**C uptake method with minor modifications. Seawater samples were spiked with 0.1µCi ml**-1 of 14**C labelled sodium bicarbonate (Moravek Biochemicals, Brea, USA) and distributed in 10 clear bottles (20 ml each). Subsequently they were incubated for 12 h at -1.3°C under different scalar irradiances (0-420 µmol photons m**-2 s**-1) measured with a spherical sensor (Spherical Micro Quantum Sensor US-SQS/L, Heinz Walz, Effeltrich, Germany). At the end of the incubation, samples were filtered onto 0.2 µm nitrocellulose filters and the particulate radioactive carbon uptake was determined by liquid scintillation counting using Filter count scintillation cocktail (Perkin Elmer, Waltham, USA). The carbon uptake values in the dark were subtracted from the carbon uptake values measured in the light incubations. Dissolved inorganic carbon (DIC) was measured for each sample using the flow injection system (Hall and Aller, 1992). The DIC concentration was taken into account to calculate the amount of labeled bicarbonate incorporated into the cell. Carbon fixation rates were normalized volumetrically and by chlorophyll a. Photosynthesis-irradiance curves (PI curves) were fitted using MATLAB® according to the equation proposed by Platt et al. (1980) including a photoinhibition parameter (beta) and providing the main photosynthetic parameters: maximum Chla normalized carbon fixation rate if there were no photoinhibition (Pb) and the initial slope of the saturation curve (alpha). The derived parameters: light intensity at which photosynthesis is maximal (Im), the carbon fixation rate at that maximal irradiance (Pbm) and the adaptation parameter or photoacclimation index (Ik) were calculated according to Platt et al. (1982).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Net Primary Production was measured using the 14**C uptake method with minor modifications. Melted sea ice samples were spiked with 0.1µCi ml**-1 of 14**C labelled sodium bicarbonate (Moravek Biochemicals, Brea, USA) and distributed in 10 clear bottles (20 ml each). Subsequently they were incubated for 12 h at -1.3°C under different scalar irradiances (0-420 µmol photons m**-2 s**-1) measured with a spherical sensor (Spherical Micro Quantum Sensor US-SQS/L, Heinz Walz, Effeltrich, Germany). At the end of the incubation, samples were filtered onto 0.2 µm nitrocellulose filters and the particulate radioactive carbon uptake was determined by liquid scintillation counting using Filter count scintillation cocktail (Perkin Elmer, Waltham, USA). The carbon uptake values in the dark were subtracted from the carbon uptake values measured in the light incubations. Dissolved inorganic carbon (DIC) was measured for each sample using the flow injection system (Hall and Aller, 1992). The DIC concentration was taken into account to calculate the amount of labeled bicarbonate incorporated into the cell. Carbon fixation rates were normalized volumetrically and by chlorophyll a. Photosynthesis-irradiance curves (PI curves) were fitted using MATLAB® according to the equation proposed by Platt et al. (1980) including a photoinhibition parameter (beta) and providing the main photosynthetic parameters: maximum Chla normalized carbon fixation rate if there were no photoinhibition (Pb) and the initial slope of the saturation curve (alpha). The derived parameters: light intensity at which photosynthesis is maximal (Im), the carbon fixation rate at that maximal irradiance (Pbm) and the adaptation parameter or photoacclimation index (Ik) were calculated according to Platt et al. (1982).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DSDP Hole 504B is the deepest basement hole in the oceanic crust, penetrating through a 571.5 m pillow section, a 209 m lithologic transition zone, and 295 m into a sheeted dike complex. An oxygen isotopic profile through the upper crust at Site 504 is similar to that in many ophiolite complexes, where the extrusive section is enriched in 18O relative to unaltered basalts, and the dike section is variably depleted and enriched. Basalts in the pillow section at Site 504 have delta 18O values generally ranging from +6.1 to +8.5? SMOW (mean= +7.0?), although minor zeolite-rich samples range up to 12.7?. Rocks depleted in 18O appear abruptly at 624 m sub-basement in the lithologic transition from 100% pillows to 100% dikes, coinciding with the appearance of greenschist facies minerals in the rocks. Whole-rock values range to as low as +3.6?, but the mean values for the lithologic transition zone and dike section are +5.8 and +5.4?, respectively. Oxygen and carbon isotopic data for secondary vein minerals combined with the whole rock data provide evidence for the former presence of two distinct circulation systems separated by a relatively sharp boundary at the top of the lithologic transition zone. The pillow section reacted with seawater at low temperatures (near 0°C up to a maximum of around 150°C) and relatively high water/rock mass ratios (10-100); water/rock ratios were greater and conditions were more oxidizing during submarine weathering of the uppermost 320 m than deeper in the pillow section. The transition zone and dikes were altered at much higher temperatures (up to about 350°C) and generally low water/rock mass ratios (~1), and hydrothermal fluids probably contained mantle-derived CO2. Mixing of axial hydrothermal fluids upwelling through the dike section with cooler seawater circulating in the overlying pillow section resulted in a steep temperature gradient (~2.5°C/m) across a 70 m interval at the top of the lithologic transition zone. Progressive reaction during axial hydrothermal metamorphism and later off-axis alteration led to the formation of albite- and Ca-zeolite-rich alteration halos around fractures. This enhanced the effects of cooling and 18O enrichment of fluids, resulting in local increases in delta 18O of rocks which had been previously depleted in 18O during prior axial metamorphism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide the first exploration of thallium (Tl) abundances and stable isotope compositions as potential tracers during arc lava genesis. We present a case study of lavas from the Central Island Province (CIP) of the Mariana arc, supplemented by representative sedimentary and altered oceanic crust (AOC) inputs from ODP Leg 129 Hole 801 outboard of the Mariana trench. Given the large Tl concentration contrast between the mantle and subduction inputs coupled with previously published distinctive Tl isotope signatures of sediment and AOC, the Tl isotope system has great potential to distinguish different inputs to arc lavas. Furthermore, CIP lavas have well-established inter island variability, providing excellent context for the examination of Tl as a new stable isotope tracer. In contrast to previous work (Nielsen et al., 2006b), we do not observe Tl enrichment or light epsilon 205Tl (where epsilon 205Tl is the deviation in parts per 10,000 of a sample 205Tl/203Tl ratio compared to NIST SRM 997 Tl standard) in the Jurassic-aged altered mafic ocean crust subducting outboard of the Marianas (epsilon 205Tl = - 4.4 to 0). The lack of a distinctive epsilon 205Tl signature may be related to secular changes in ocean chemistry. Sediments representative of the major lithologies from ODP Hole Leg 129 801 have 1-2 orders of magnitude of Tl enrichment compared to the CIP lavas, but do not record heavy signatures (epsilon 205Tl = - 3.0 to + 0.4), as previously found in similar sediment types (epsilon 205Tl > + 2.5; Rehkämper et al., 2004). We find a restricted range of epsilon 205Tl = - 1.8 to - 0.4 in CIP lavas, which overlaps with MORB. One lava from Guguan falls outside this range with epsilon 205Tl = + 1.2. Coupled Cs, Tl and Pb systematics of Guguan lavas suggests that this heavy Tl isotope composition may be due to preferential degassing of isotopically light Tl. In general, the low Tl concentrations and limited isotopic range in the CIP lavas is likely due to the unexpectedly narrow range of epsilon 205Tl found in Mariana subduction inputs, coupled with volcaniclastic, rather than pelagic sediment as the dominant source of Tl. Much work remains to better understand the controls on Tl processing through a subduction zone. For example, Tl could be retained in residual phengite, offering the potential exploration of Cs/Tl ratios as a slab thermometer. However, data for Tl partitioning in phengite (and other micas) is required before developing this application further. Establishing a database of Tl concentrations and stable isotopes in subduction zone lavas with different thermal parameters and sedimentary inputs is required for the future use of Tl as a subduction zone tracer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Only a few studies have examined the variation of oxygen and hydrogen isotopes of seawater in NE Atlantic water masses, and data are especially sparse for intermediate and deep-water masses. The current study greatly expands this record with 527 d18O values from 47 stations located throughout the mid- to low-latitude NE Atlantic. In addition, dD was analyzed in the 192 samples collected along the GEOTRACES North Atlantic Transect GA03 (GA03_e=KN199-4) and the 115 Iberia-Forams cruise samples from the western and southern Iberian margin. An intercomparison study between the two stable isotope measurement techniques (cavity ring-down laser spectroscopy and magnetic-sector isotope ratio mass spectrometry) used to analyze GA03_e samples reveals relatively good agreement for both hydrogen and oxygen isotope ratios. The surface (0-100 m) and central (100-500 m) water isotope data show the typical, evaporation related trend of increasing values equatorward with the exception for the zonal transect off Cape Blanc, NW Africa. Off Cape Blanc, surface water isotope signatures are modified by the upwelling of fresher Antarctic Intermediate Water (AAIW) that generally has isotopic values of 0.0 to 0.5 per mil for d18O and 0 to 2 per mil for dD. Along the Iberian margin the Mediterranean Outflow Water (MOW) is clearly distinguished by its high d18O (0.5-1.1 per mil) and dD (3-6 per mil) values that can be traced into the open Atlantic. Isotopic values in the NE Atlantic Deep Water (NEADW) are relatively low (d18O: -0.1 to 0.5 per mil; dD: -1 to 4 per mil) and show a broader range than observed previously in the northern and southern convection areas. The NEADW is best observed at GA03_e Stations 5 and 7 in the central NE Atlantic basin. Antarctic Bottom Water isotope values are relatively high indicating modification of the original Antarctic source water along the flow path. The reconstructed d18O-salinity relationship for the complete data set has a slope of 0.51, i.e., slightly steeper than the 0.46 described previously by Pierre et al. (1994, J. Mar. Syst. 5 (2), 159-170.) for the tropical to subtropical Northeast Atlantic. This slope decreases to 0.46 for the subtropical North Atlantic Central Water (NACW) and the MOW and to 0.32 for the surface waters of the upper 50 m. The dD-salinity mixing lines have estimated slopes of 3.01 for the complete data, 1.26 for the MOW, 3.47 for the NACW, and 2.63 for the surface waters. The slopes of the d18O-dD relationship are significantly lower than the one for the Global Meteoric Water Line with 5.6 for the complete data set, 2.30 for the MOW, 4.79 for the NACW, and 3.99 for the surface waters. The lower slopes in all the relationships clearly reflect the impact of the evaporation surplus in the subtropics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large diameter piston core containing 8.35 m of metalliferous sediment has been recovered from a small abyssal valley in the remote Southwest Pacific Basin (31°42.194'S, 143°30.331'W; 5082 m water depth), providing unique insight into hydrothermal activity and eolian sedimentation there since the early Oligocene. A combination of fish-teeth Sr-isotope stratigraphy and INAA geochemical data reveals an exponentially decreasing hydrothermal flux 31 Ma to the present. Although hydrothermal sedimentation related to seafloor spreading explains this trend, a complex history of late Eocene/early Oligocene ridge jumps, propagating rifts and plate tectonic reorganization of South Pacific seafloor could have also played a role. A possible hiatus in deposition, as recorded by changes in core composition just below 2 m depth, is beyond the resolution of the fish teeth Sr isotope dating method employed here; however, the timing of this interval may be coincident with extinction of the Pacific-Farallon Ridge at ~20 Ma. A low flux eolian component accumulating at this site shows an increase relative to the hydrothermal component above 2 m depth, consistent with dust-generating continental sources far to the west (Australia/New Zealand). This is the first long-term paleoceanographic record obtained from within the South Pacific "bare zone" (Rea et al., 2006), an anomalous region where Pacific seafloor has largely escaped sediment accumulation since the Late Cretaceous.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-atmosphere melting experiments, controlled to approximately the fayalite-magnetite-quartz oxygen buffer, performed on a basalt from Hole 797C crystallized olivine and plagioclase nearly simultaneously from about 1235°C and augite from about 1175°C. The liquid compositions indicate systematic trends of increasing FeO and TiO2 and decreasing Al2O3 with decreasing MgO. Experimental olivine compositions vary from Fo90 to Fo78, plagioclase from An79 to An67, and augite from En49 to En46. The KD value for the Fe2+ and Mg distribution between olivine and liquid is 0.31. The KD value for the distribution of Fetotal and Mg between augite and liquid averages 0.24. These KD values suggest experimental equilibrium. The KD values for Na and Ca distribution between plagioclase and liquid range between 0.55 and 0.99 and are dependent on crystallization temperature. Projected on pseudoternary basaltic phase diagrams, the liquid line of descent moves toward increasing quartz normative compositions, revealing a typical tholeiitic crystallization trend with marked Fe and Ti enrichments. Such enrichments are a reflection of the dominance of plagioclase in the crystallizing assemblage. The experimental results can explain the marked Fe- and Ti-enrichment trends observed for the sills of the lower part of Hole 797C, but have no direct bearing on the origin of the relatively evolved high-Al basalts of Hole 794C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Constraining the nature of Antarctic Ice Sheet (AIS) response to major past climate changes may provide a window onto future ice response and rates of sea level rise. One approach to tracking AIS dynamics, and differentiating whole system versus potentially heterogeneous ice sheet sector changes, is to integrate multiple climate proxies for a specific time slice across widely distributed locations. This study presents new iceberg-rafted debris (IRD) data across the interval that includes Marine Isotope Stage 31 (MIS 31: 1.081-1.062 Ma, a span of ~19 kyr; Lisiecki and Raymo, 2005), which lies on the cusp of the mid-Brunhes climate transition (as glacial cycles shifted from ~41,000 yr to ~100,000 yr duration). Two sites are studied - distal Ocean Drilling Program (ODP) Leg 177 Site 1090 (Site 1090) in the eastern subantarctic sector of the South Atlantic Ocean, and proximal ODP Leg 188 Site 1165 (Site 1165), near Prydz Bay, in the Indian Ocean sector of the Antarctic margin. At each of these sites, MIS 31 is marked by the presence of the Jaramillo Subchron (0.988-1.072 Ma; Lourens et al., 2004) which provides a time-marker to correlate these two sites with relative precision. At both sites, records of multiple climate proxies are available to aid in interpretation. The presence of IRD in sediments from our study areas, which include garnets indicating a likely East Antarctic Ice Sheet (EAIS) origin, supports the conclusion that although the EAIS apparently withdrew significantly over MIS 31 in the Prydz Bay region and other sectors, some sectors of the EAIS must still have maintained marine margins capable of launching icebergs even through the warmest intervals. Thus, the EAIS did not respond in complete synchrony even to major climate changes such as MIS 31. Further, the record at Site 1090 (supported by records from other subantarctic locations) indicates that the glacial MIS 32 should be reduced to no more than a stadial, and the warm interval of Antarctic ice retreat that includes MIS 31 should be expanded to MIS 33-31. This revised warm interval lasted about 52 kyr, in line with several other interglacials in the benthic d18O records stack of Lisiecki and Raymo (2005), including the super-interglacials MIS 11 (duration of 50 kyr) and MIS 5 (duration of 59 kyr). The record from Antarctica-proximal Site 1165, when interpreted in accord with the record from ANDRILL-1B, indicates that in these southern high latitude sectors, ice sheet retreat and the effects of warming lasted longer than at Site 1090, perhaps until MIS 27. In the current interpretations of the age models of the proximal sites, ice sheet retreat began relatively slowly, and was not really evident until the start of MIS 31. In another somewhat more speculative interpretation, ice sheet retreat began noticeably with MIS 33, and accelerated during MIS 31. Ice sheet inertia (the lag-times in the large-scale responses of major ice sheets to a forcing) likely plays an important part in the timing and scale of these events in vulnerable sectors of the AIS.