139 resultados para Algae.
Resumo:
Rising atmospheric CO2 concentrations could cause a calcium carbonate subsaturation of Arctic surface waters in the next 20 yr, making these waters corrosive for calcareous organisms. It is presently unknown what effects this will have on Arctic calcifying organisms and the ecosystems of which they are integral components. So far, acidification effects on crustose coralline red algae (CCA) have only been studied in tropical and Mediterranean species. In this work, we investigated calcification rates of the CCA Lithothamnion glaciale collected in northwest Svalbard in laboratory experiments under future atmospheric CO2 concentrations. The algae were exposed to simulated Arctic summer and winter light conditions in 2 separate experiments at optimum growth temperatures. We found a significant negative effect of increased CO2 levels on the net calcification rates of L. glaciale in both experiments. Annual mean net dissolution of L. glaciale was estimated to start at an aragonite saturation state between 1.1 and 0.9 which is projected to occur in parts of the Arctic surface ocean between 2030 and 2050 if emissions follow 'business as usual' scenarios (SRES A2; IPCC 2007). The massive skeleton of CCA, which consist of more than 80% calcium carbonate, is considered crucial to withstanding natural stresses such as water movement, overgrowth or grazing. The observed strong negative response of this Arctic CCA to increased CO2 levels suggests severe threats of the projected ocean acidification for an important habitat provider in the Arctic coastal ocean.
Resumo:
Material cored during the Integrated Ocean Drilling Program (IODP) Expedition 310 'Tahiti Sea Level' revealed that the fossil reef systems around Tahiti are composed of two major stratigraphic sequences: (i) a last deglacial sequence; and (ii) an older Pleistocene sequence. The older Pleistocene carbonate sequence is composed of reef deposits associated with volcaniclastic sediments and was preserved in Hole 310-M0005D drilled off Maraa. Within an approximately 70-m-thick older Pleistocene sequence (33.22-101.93 m below seafloor; 92.85-161.56 m below present sealevel) in this hole, 11 depositional units are defined by lithological changes, sedimentological features, and paleontological characteristics and are numbered sequentially from the top of the hole downward (Subunits P1-P11). Paleowater depths inferred from nongeniculate coralline algae, combined with those determined by using corals and larger foraminifers, suggest two major sealevel rises during the deposition of the older Pleistocene sequence. Of these, the second sealevel rise is associated with an intervening sealevel drop. It is likely that the second sealevel rise corresponds to that during Termination II (TII, the penultimate deglaciation, from Marine Isotope Stages 6 to 5e). Therefore, the intervening sealevel drop can be correlated with that known as the 'sealevel reversal' during TII. Because there are limited data on the Pleistocene reef systems in the tropical South Pacific Ocean, this study provides important information about Pleistocene sealevel history, the evolution of coral reef ecosystems, and the responses of coral reefs to Quaternary climate changes.