968 resultados para Al-hole center
Resumo:
Basalts from Hole 516F, DSDP Leg 72 on the Rio Grande Rise are tholeiitic in character but differ from normal mid-ocean ridge basalts in the South Atlantic in higher concentrations of incompatible elements such as Ti, K, V, Sr, Ba, Zr, Nb, and light rare-earth elements and in lower concentrations of Mg, Cr, and Ni. They contrast with previously reported basalts from the Rio Grande Rise, which were highly alkalic in character. The Rio Grande Rise basalts from Hole 516F (age 84.5 Ma) are generally similar to basalts from the eastern end of the Walvis Ridge (80-100 Ma). It is suggested that they either originated, like the Walvis Ridge, from a mantle hot spot that is different from the present-day hot spot (Tristan da Cunha) and that has changed composition with time, or from a spreading center that was shallow and chemically influenced by the adjacent hot spot, similar to the present-day Mid-Atlantic Ridge near the Azores and Tristan da Cunha.
Resumo:
The volcanism of Central America, according to current theory (Pichler and Weyl, 1973; Stoiber and Carr, 1974; Hey, 1977), is related to the subduction of the Cocos Plate under the North American lithospheric plate and the melting of ocean crust material in the subduction zone (Green and Ringwood, 1968; Dickinson, 1970, Fitton, 1971). Since Cocos Plate subduction occurs at the rate of more than 7 cm/y. (Hey et al., 1977), basalts underlying upper Miocene sediments of the Middle America Trench outer slope, penetrated in Hole 487 (Fig. 1) during Leg 66 (Moore et al., 1979), should have formed far from their present position if current theory is accurate. Present manifestations of basaltic magmatism in adjacent areas of the Pacific derive from the axial part of the East Pacific Rise, the Galapagos spreading center, and transform fracture zones. The question arises: Are there analogs of the Middle America Trench basalts among magmatic cock associated with these modern features, or do the trench basalts have some other origin?
Resumo:
A ridge of peridotite was drilled off of the Galicia margin (Hole 637A) during ODP Leg 103. The ridge is located at the approximate boundary between oceanic and continental crust. This setting is of interest because the peridotite may be representative of upwelling upper mantle beneath an incipient ocean basin. The composition of the Galicia margin peridotite is compared with those of other North Atlantic peridotites. Hole 637A ultramafic lithologies include clinopyroxene-rich spinel harzburgite and lherzolite, as well as plagioclase-bearing peridotites. Variations in mineral modal abundances and mineral compositions are observed but are not systematic. The peridotites are broadly similar in composition to other peridotites recovered from ocean basins, but the mineral compositions and abundances suggest that they are less depleted in basaltic components than other North Atlantic peridotites by about 10%. In particular, the peridotites are enriched in the magmaphilic elements Na, Al, and Ti, as compared with other abyssal peridotites. The high abundances of these elements suggest that the Hole 637A peridotites had experienced, at most, very small amounts of partial melting prior to their emplacement. The presence of plagioclase rimming spinel in some samples suggests that the peridotite last equilibrated at about 9 kbar, near the transition between plagioclase- and spinel-peridotite stability fields. Temperatures of equilibration of the peridotite are calculated as 900°-1100°C. The relatively undepleted composition of the peridotite indicates that it was emplaced at a shallow mantle level under a relatively cool thermal regime and cooled below solidus temperatures without having participated in any significant partial melting and basalt production. This is consistent with the emplacement of the peridotite during incipient rifting of the ocean basin, before a true spreading center was established.